Angela Pirillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3807539/publications.pdf

Version: 2024-02-01

		117625	85541
109	5,502	34	71
papers	5,502 citations	h-index	g-index
110	110	110	8045
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genetically determined hypercholesterolaemia results into premature leucocyte telomere length shortening and reduced haematopoietic precursors. European Journal of Preventive Cardiology, 2022, 29, 721-729.	1.8	5
2	New insights into the role of bempedoic acid and ezetimibe in the treatment of hypercholesterolemia. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 161-166.	2.3	11
3	Understanding the efficacy and safety of lomitapide in homozygous familial hypercholesterolaemia. European Journal of Preventive Cardiology, 2022, 29, 829-831.	1.8	2
4	Twelve Variants Polygenic Score for Lowâ€Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations. Journal of the American Heart Association, 2022, 11, e023668.	3.7	12
5	Predictive value of HDL function in patients with coronary artery disease: relationship with coronary plaque characteristics and clinical events. Annals of Medicine, 2022, 54, 1036-1046.	3.8	9
6	Insights from ORION studies: focus on inclisiran safety. Cardiovascular Research, 2021, 117, 24-26.	3.8	6
7	Worldwide Changes in Total Cholesterol and Non-HDL-Cholesterol Trends Indicate Where the Challenges Are for the Coming Years. Clinical Chemistry, 2021, 67, 30-32.	3.2	5
8	Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovascular Research, 2021, 117, 1033-1045.	3.8	33
9	HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells, 2021, 10, 1061.	4.1	23
10	Global epidemiology of dyslipidaemias. Nature Reviews Cardiology, 2021, 18, 689-700.	13.7	290
10	Global epidemiology of dyslipidaemias. Nature Reviews Cardiology, 2021, 18, 689-700. Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185.	13.7	290
	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?.		
11	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185.	1.6	10
11	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185. Lipoprotein remnants: to be or not to be. European Heart Journal, 2021, 42, 4844-4846. Monoclonal Antibodies in the Management of Familial Hypercholesterolemia: Focus on PCSK9 and	1.6 2.2	10
11 12 13	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185. Lipoprotein remnants: to be or not to be. European Heart Journal, 2021, 42, 4844-4846. Monoclonal Antibodies in the Management of Familial Hypercholesterolemia: Focus on PCSK9 and ANGPTL3 Inhibitors. Current Atherosclerosis Reports, 2021, 23, 79. Recent insights into low-density lipoprotein metabolism and therapy. Current Opinion in Clinical	1.6 2.2 4.8	10 4 23
11 12 13	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185. Lipoprotein remnants: to be or not to be. European Heart Journal, 2021, 42, 4844-4846. Monoclonal Antibodies in the Management of Familial Hypercholesterolemia: Focus on PCSK9 and ANGPTL3 Inhibitors. Current Atherosclerosis Reports, 2021, 23, 79. Recent insights into low-density lipoprotein metabolism and therapy. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, 24, 120-126. Statins increase Lp(a) plasma level: is this clinically relevant?. European Heart Journal, 2020, 41,	1.6 2.2 4.8 2.5	10 4 23 7
11 12 13 14	Omega-3 for Cardiovascular Diseases: Where Do We Stand After REDUCE-IT and STRENGTH?. Circulation, 2021, 144, 183-185. Lipoprotein remnants: to be or not to be. European Heart Journal, 2021, 42, 4844-4846. Monoclonal Antibodies in the Management of Familial Hypercholesterolemia: Focus on PCSK9 and ANGPTL3 Inhibitors. Current Atherosclerosis Reports, 2021, 23, 79. Recent insights into low-density lipoprotein metabolism and therapy. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, 24, 120-126. Statins increase Lp(a) plasma level: is this clinically relevant? European Heart Journal, 2020, 41, 2285-2287. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects.	1.6 2.2 4.8 2.5	10 4 23 7

#	Article	IF	CITATIONS
19	New Pharmacological Approaches to Target PCSK9. Current Atherosclerosis Reports, 2020, 22, 24.	4.8	41
20	Beyond LDL-C levels, does remnant cholesterol estimation matter?. European Journal of Preventive Cardiology, 2020, 27, 1088-1090.	1.8	8
21	LDL-Cholesterol-Lowering Therapy. Handbook of Experimental Pharmacology, 2020, , 1.	1.8	8
22	Similarities and differences between European and American guidelines on the management of blood lipids to reduce cardiovascular risk. Atherosclerosis Supplements, 2020, 42, e1-e5.	1.2	5
23	Hypercholesterolemia and cardiovascular disease: Focus on high cardiovascular risk patients. Atherosclerosis Supplements, 2020, 42, e30-e34.	1.2	6
24	Lipid-lowering therapy and low-density lipoprotein cholesterol goal achievement in patients with acute coronary syndromes: The ACS patient pathway project. Atherosclerosis Supplements, 2020, 42, e49-e58.	1.2	23
25	Improving lipid management in patients with acute coronary syndrome: The ACS Lipid EuroPath tool. Atherosclerosis Supplements, 2020, 42, e65-e71.	1.2	8
26	Implementation of clinical practices and pathways optimizing ACS patients lipid management: Focus on eight European initiatives. Atherosclerosis Supplements, 2020, 42, e59-e64.	1.2	8
27	Hypercholesterolemia and cardiovascular disease: What to do before initiating pharmacological therapy. Atherosclerosis Supplements, 2020, 42, e25-e29.	1.2	1
28	Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovascular Research, 2019, 115, 510-518.	3.8	63
29	The role of red yeast rice (RYR) supplementation in plasma cholesterol control: A review and expert opinion. Atherosclerosis Supplements, 2019, 39, e1-e8.	1.2	31
30	Multilevel Models to Estimate Carotid Intima-Media Thickness Curves for Individual Cardiovascular Risk Evaluation. Stroke, 2019, 50, 1758-1765.	2.0	23
31	Cholesterol metabolism, pancreatic \hat{l}^2 -cell function and diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2149-2156.	3.8	76
32	Cardiovascular events with PCSK9 inhibitors: an updated meta-analysis of randomised controlled trials. Pharmacological Research, 2019, 143, 143-150.	7.1	25
33	Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the role of HDL. Current Opinion in Lipidology, 2019, 30, 462-469.	2.7	18
34	Increasing high-density lipoprotein cholesterol levels for cardiovascular benefit: The end of a dream?. European Journal of Preventive Cardiology, 2019, 26, 531-532.	1.8	5
35	Lipid Lowering and Incidence of Cataract, a Role for Fibrates. Clinical Pharmacology and Therapeutics, 2019, 105, 318-319.	4.7	1
36	High-density lipoprotein cholesterol levels, cardiovascular disease risk, and cancer: a relation which does not apply to all?. Cardiovascular Research, 2019, 115, 6-7.	3.8	3

#	Article	IF	Citations
37	Biological Consequences of Dysfunctional HDL. Current Medicinal Chemistry, 2019, 26, 1644-1664.	2.4	65
38	The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Current Atherosclerosis Reports, 2018, 20, 12.	4.8	67
39	Prevalence and management of familial hypercholesterolemia in patients with coronary artery disease: The heredity survey. International Journal of Cardiology, 2018, 252, 193-198.	1.7	34
40	Proprotein Convertase Subtilisin Kexin 9 Inhibitors. Cardiology Clinics, 2018, 36, 241-256.	2.2	5
41	Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study. Atherosclerosis, 2018, 277, 413-418.	0.8	48
42	PCSK9 inhibition and Lp(a) reduction: another piece of the puzzle?. European Heart Journal, 2018, 39, 2586-2588.	2.2	10
43	Pitavastatin and HDL: Effects on plasma levels and function(s). Atherosclerosis Supplements, 2017, 27, e1-e9.	1.2	21
44	Vascular inflammation and lowâ€density lipoproteins: is cholesterol the link? A lesson from the clinical trials. British Journal of Pharmacology, 2017, 174, 3973-3985.	5.4	105
45	Statin use and risk of new-onset diabetes: A meta-analysis of observational studies. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 396-406.	2.6	111
46	Targeting Cholesterol in Non-ischemic Heart Failure: A Role for LDLR Gene Therapy?. Molecular Therapy, 2017, 25, 2435-2437.	8.2	1
47	Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. Atherosclerosis Supplements, 2017, 29, 17-24.	1.2	65
48	Strategies for the use of nonstatin therapies. Current Opinion in Lipidology, 2017, 28, 458-464.	2.7	2
49	Effect of PSCK9 loss-of-function mutation R46l on plasma lipids, endothelial function and vascular inflammation in the post-prandial state. Atherosclerosis, 2017, 263, e136.	0.8	0
50	PCSK9 inhibition in statin-intolerant HeFH patients: What's new?. European Journal of Preventive Cardiology, 2017, 24, 1525-1527.	1.8	0
51	Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Atherosclerosis, 2017, 263, e262-e263.	0.8	4
52	Anti-PCSK9 antibodies for the treatment of heterozygous familial hypercholesterolemia: patient selection and perspectives. Vascular Health and Risk Management, 2017, Volume 13, 343-351.	2.3	14
53	Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovascular Research, 2016, 112, 429-442.	3.8	105
54	Niemann-Pick C1-Like 1 (NPC1L1) Inhibition and Cardiovascular Diseases. Current Medicinal Chemistry, 2016, 23, 983-999.	2.4	29

#	Article	IF	CITATIONS
55	Statin Intolerance: Diagnosis and Remedies. Current Cardiology Reports, 2015, 17, 27.	2.9	32
56	Update on the management of severe hypertriglyceridemia – focus on free fatty acid forms of omega-3. Drug Design, Development and Therapy, 2015, 9, 2129.	4.3	12
57	Apolipoprotein C-III: From Pathophysiology to Pharmacology. Trends in Pharmacological Sciences, 2015, 36, 675-687.	8.7	144
58	Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From inÂvitro evidence to clinical studies. Atherosclerosis, 2015, 243, 449-461.	0.8	231
59	HDL in Infectious Diseases and Sepsis. Handbook of Experimental Pharmacology, 2015, 224, 483-508.	1.8	145
60	Postprandial lipemia as a cardiometabolic risk factor. Current Medical Research and Opinion, 2014, 30, 1489-1503.	1.9	94
61	HDL in innate and adaptive immunity. Cardiovascular Research, 2014, 103, 372-383.	3.8	236
62	15â€Lipoxygenaseâ€Mediated Modification of HDL ₃ Impairs eNOS Activation in Human Endothelial Cells. Lipids, 2014, 49, 317-326.	1.7	9
63	Production and Metabolism of Triglyceride-Rich Lipoproteins in Both the Normal and Diabetic States. Contemporary Diabetes, 2014, , 125-139.	0.0	2
64	HDL: To Treat or Not To Treat?. Current Atherosclerosis Reports, 2014, 16, 429.	4.8	12
65	Cardiometabolic and immune factors associated with increased common carotid artery intima-media thickness and cardiovascular disease in patients with systemic lupus erythematosus. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 751-759.	2.6	39
66	Effect of treatment with pravastatin or ezetimibe on endothelial function in patients with moderate hypercholesterolemia. European Journal of Clinical Pharmacology, 2013, 69, 341-346.	1.9	23
67	Omega-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Atherosclerosis Supplements, 2013, 14, 237-242.	1.2	27
68	Omega-3 polyunsaturated fatty acids in the treatment of hypertriglyceridaemia. International Journal of Cardiology, 2013, 170, S16-S20.	1.7	32
69	Prevalence of classical CD14++/CD16 \hat{a}° but not of intermediate CD14++/CD16 + monocytes in hypoalphalipoproteinemia. International Journal of Cardiology, 2013, 168, 2886-2889.	1.7	15
70	High-Density Lipoprotein Subfractions - What the Clinicians Need to Know. Cardiology, 2013, 124, 116-125.	1.4	509
71	LOX-1, OxLDL, and Atherosclerosis. Mediators of Inflammation, 2013, 2013, 1-12.	3.0	548
72	Soluble Lectin-Like Oxidized Low Density Lipoprotein Receptor-1 as a Biochemical Marker for Atherosclerosis-Related Diseases. Disease Markers, 2013, 35, 413-418.	1.3	60

#	Article	IF	CITATIONS
73	Treating High Density Lipoprotein Cholesterol (HDL-C): Quantity Versus Quality. Current Pharmaceutical Design, 2013, 19, 3841-3857.	1.9	27
74	Effector Memory T cells Are Associated With Atherosclerosis in Humans and Animal Models. Journal of the American Heart Association, 2012, 1, 27-41.	3.7	114
75	Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis, 2012, 220, 11-21.	0.8	158
76	Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis, 2012, 220, 381-386.	0.8	212
77	Upregulation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human endothelial cells by modified high density lipoproteins. Biochemical and Biophysical Research Communications, 2012, 428, 230-233.	2.1	23
78	Association between OLR1 K167N SNP and Intima Media Thickness of the Common Carotid Artery in the General Population. PLoS ONE, 2012, 7, e31086.	2.5	21
79	Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) by 15-lipoxygenase-modified LDL in endothelial cells. Atherosclerosis, 2011, 214, 331-337.	0.8	36
80	Therapy and clinical trials. Current Opinion in Lipidology, 2011, 22, 324-325.	2.7	1
81	HDLs, immunity, and atherosclerosis. Current Opinion in Lipidology, 2011, 22, 410-416.	2.7	41
82	Statins prevent tissue factor induction by proteaseâ€activated receptorsÂ1 and 2 in human umbilical vein endothelial cells inÂvitro. Journal of Thrombosis and Haemostasis, 2011, 9, 1608-1619.	3.8	15
83	Dual effect of hypochlorite in the modification of high density lipoproteins. Biochemical and Biophysical Research Communications, 2010, 403, 447-451.	2.1	10
84	The Challenge of Lipid Management in Patients with Diabetes or Other Endocrine Disorders. European Endocrinology, 2010, 7, 92.	1.5	0
85	The 15-Lipoxygenase-Modified High Density Lipoproteins 3 Fail to Inhibit the TNF-α-Induced Inflammatory Response in Human Endothelial Cells. Journal of Immunology, 2008, 181, 2821-2830.	0.8	24
86	Long Pentraxin 3, a Key Component of Innate Immunity, Is Modulated by High-Density Lipoproteins in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 925-931.	2.4	137
87	Modification of HDL3 by mild oxidative stress increases ATP-binding cassette transporter 1-mediated cholesterol efflux. Cardiovascular Research, 2007, 75, 566-574.	3.8	18
88	Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis, 2007, 191, 265-271.	0.8	131
89	15-Lipoxygenase-mediated modification of high-density lipoproteins impairs SR-BI- and ABCA1-dependent cholesterol efflux from macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 292-300.	2.4	34
90	Modified HDL: Biological and physiopathological consequences. Nutrition, Metabolism and Cardiovascular Diseases, 2006, $16,371-386$.	2.6	75

#	Article	IF	Citations
91	In vitro isolation of circulating endothelial progenitor cells is related to the high density lipoprotein plasma levels. International Journal of Molecular Medicine, 2006, 17, 203-8.	4.0	27
92	Proteome of endothelial cell-derived procoagulant microparticles. Proteomics, 2005, 5, 4443-4455.	2.2	85
93	Native LDL and Oxidized LDL modulate cyclooxygenase-2 expression in HUVECs through a p38-MAPK, NF- $^{\rm lp}$ B, CRE dependent pathway and affect PGE2 synthesis. International Journal of Molecular Medicine, 2004, 14, 353-9.	4.0	15
94	Oxidised-HDL3 induces the expression of PAI-1 in human endothelial cells. Role of p38MAPK activation and mRNA stabilization. British Journal of Haematology, 2004, 127, 97-104.	2.5	53
95	Gene expression and intracellular pathways involved in endothelial dysfunction induced by VLDL and oxidised VLDL. Cardiovascular Research, 2003, 59, 169-180.	3.8	59
96	Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochemical Journal, 2002, 362, 627.	3.7	25
97	Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochemical Journal, 2002, 362, 627-634.	3.7	37
98	Overexpression of Inducible Heat Shock Protein 70 in COS-1 Cells Fails to Protect From Cytotoxicity of Oxidized LDLs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 348-354.	2.4	18
99	Oxidized Lipoproteins and Endothelium. Clinical Chemistry and Laboratory Medicine, 2000, 38, 155-60.	2.3	16
100	Enhanced Macrophage Uptake of Elastase-Modified High-Density Lipoproteins. Biochemical and Biophysical Research Communications, 2000, 271, 386-391.	2.1	13
101	Oxysterols from oxidized LDL are cytotoxic but fail to induce hsp70 expression in endothelial cells. FEBS Letters, 1999, 462, 113-116.	2.8	11
102	3.P.87 Two distinct components of oxidized LDL mediate the heat shock response and cytotoxicity triggered by OxLDL. Atherosclerosis, 1997, 134, 216-217.	0.8	0
103	Simvastatin Modulates the Heat Shock Response and Cytotoxicity Mediated by Oxidized LDL in Cultured Human Endothelial Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 1997, 231, 437-441.	2.1	30
104	Human Endothelial Cells Exposed to Oxidized LDL Express hsp70 Only When Proliferating. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1104-1111.	2.4	29
105	Oxidized Ldl Trigger the Expression of Hsp70 in Cultured Endothelial Cells. Medical Science Symposia Series, 1996, , 603-612.	0.0	0
106	Inhibition of acyl-CoA: cholesterol acyltransferase decreases apolipoprotein B-100-containing lipoprotein secretion from HepG2 cells. Journal of Lipid Research, 1996, 37, 1-14.	4.2	60
107	Oxidized lipoproteins induce long-lasting inhibition of nitric oxide synthase from a murine endothelioma cell line (bEnd.4). European Journal of Cardiovascular Prevention and Rehabilitation, 1995, 2, 123-130.	1.5	2
108	Oxidized LDL induce hsp70 expression in human smooth muscle cells. FEBS Letters, 1995, 372, 1-5.	2.8	34

Angela Pirillo

#	Article	IF	CITATIONS
109	Constituents of Nothapodytes foetida. Journal of the Chemical Society Perkin Transactions 1, 1995, , 583.	0.9	22