
Gianluca Bossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3806816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 1.	8.6	200
2	Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene, 2006, 25, 304-309.	5.9	188
3	Interference with p53 protein inhibits hematopoietic and muscle differentiation Journal of Cell Biology, 1996, 134, 193-204.	5.2	118
4	Leptin Mediates Tumor–Stromal Interactions That Promote the Invasive Growth of Breast Cancer Cells. Cancer Research, 2012, 72, 1416-1427.	0.9	105
5	Evidences that Leptin Up-regulates E-Cadherin Expression in Breast Cancer: Effects on Tumor Growth and Progression. Cancer Research, 2007, 67, 3412-3421.	0.9	101
6	A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?. PLoS ONE, 2017, 12, e0171559.	2.5	99
7	MEK/ERK inhibitor U0126 affects <i>in vitro</i> and <i>in vivo</i> growth of embryonal rhabdomyosarcoma. Molecular Cancer Therapeutics, 2009, 8, 543-551.	4.1	89
8	Degradation of mutant p53H175 protein by Zn(II) through autophagy. Cell Death and Disease, 2014, 5, e1271-e1271.	6.3	82
9	Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 2008, 7, 1870-1879.	2.6	81
10	Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers, 2018, 10, 131.	3.7	81
11	Restoration of wildâ€ŧype p53 function in human cancer: Relevance for tumor therapy. Head and Neck, 2007, 29, 272-284.	2.0	79
12	Mutant p53-induced Up-regulation of Mitogen-activated Protein Kinase Kinase 3 Contributes to Gain of Function. Journal of Biological Chemistry, 2010, 285, 14160-14169.	3.4	75
13	Cheâ€lâ€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	7.8	66
14	Slug (SNAI2) Down-Regulation by RNA Interference Facilitates Apoptosis and Inhibits Invasive Growth in Neuroblastoma Preclinical Models. Clinical Cancer Research, 2008, 14, 4622-4630.	7.0	59
15	Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene, 2015, 34, 2493-2504.	5.9	59
16	Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Experimental Cell Research, 2009, 315, 67-75.	2.6	53
17	Abscopal effect of radiation therapy: Interplay between radiation dose and p53 status. International Journal of Radiation Biology, 2014, 90, 248-255.	1.8	53
18	Expression of Slug Is Regulated by c-Myb and Is Required for Invasion and Bone Marrow Homing of Cancer Cells of Different Origin. Journal of Biological Chemistry. 2010. 285. 29434-29445.	3.4	51

GIANLUCA BOSSI

#	Article	IF	CITATIONS
19	In Vivo and in Vitro Evidence That PPARÎ ³ Ligands Are Antagonists of Leptin Signaling in Breast Cancer. American Journal of Pathology, 2011, 179, 1030-1040.	3.8	50
20	Transcriptional regulation of hypoxia-inducible factor 1α by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 368-377.	4.1	48
21	Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation. Cancer Cell, 2010, 18, 122-134.	16.8	45
22	Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene, 2016, 35, 3760-3770.	5.9	43
23	Loss of Î ² 4 Integrin Subunit Reduces the Tumorigenicity of MCF7 Mammary Cells and Causes Apoptosis upon Hormone Deprivation. Clinical Cancer Research, 2006, 12, 3280-3287.	7.0	41
24	PKC Theta Ablation Improves Healing in a Mouse Model of Muscular Dystrophy. PLoS ONE, 2012, 7, e31515.	2.5	39
25	Targeting MKK3 as a novel anticancer strategy: molecular mechanisms and therapeutical implications. Cell Death and Disease, 2015, 6, e1621-e1621.	6.3	39
26	The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments. International Journal of Molecular Sciences, 2020, 21, 2773.	4.1	35
27	Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene, 2000, 19, 3245-3255.	5.9	34
28	Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals. Molecular Biology of the Cell, 2012, 23, 1467-1474.	2.1	33
29	Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death and Differentiation, 2006, 13, 1994-1997.	11.2	32
30	HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity. Oncotarget, 2015, 6, 10320-10334.	1.8	30
31	Wild-type p53 gene transfer is not detrimental to normal cells in vivo: implications for tumor gene therapy. Oncogene, 2004, 23, 418-425.	5.9	29
32	MKK3 as oncotarget. Aging, 2016, 8, 1-2.	3.1	29
33	The role of wild-type p53 in the differentiation of primary hemopoietic and muscle cells. Oncogene, 1999, 18, 5831-5835.	5.9	27
34	Inhibition of leydig tumor growth by farnesoid X receptor activation: The <i>in vitro</i> and <i>in vivo</i> basis for a novel therapeutic strategy. International Journal of Cancer, 2013, 132, 2237-2247.	5.1	26
35	The beneficial effect of Zinc(II) on low-dose chemotherapeutic sensitivity involves p53 activation in wild-type p53-carrying colorectal cancer cells. Journal of Experimental and Clinical Cancer Research, 2015, 34, 87.	8.6	24
36	MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer. Cell Death and Disease, 2019, 10, 842.	6.3	18

GIANLUCA BOSSI

#	Article	IF	CITATIONS
37	TP53 drives abscopal effect by secretion of senescence-associated molecular signals in non-small cell lung cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 89.	8.6	18
38	HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Therapy, 2012, 19, 888-898.	4.6	17
39	Retinoic acid and camp differentially regulate human chromogranin a promoter activity during differentiation of neuroblastoma cells. European Journal of Cancer, 1995, 31, 447-452.	2.8	16
40	Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Research, 2020, 48, 5891-5906.	14.5	14
41	Cytokine Modulation in Breast Cancer Patients Undergoing Radiotherapy: A Revision of the Most Recent Studies. International Journal of Molecular Sciences, 2019, 20, 382.	4.1	11
42	Inhibition of p85, the non-catalytic subunit of phosphatidylinositol 3-kinase, exerts potent antitumor activity in human breast cancer cells. Cell Death and Disease, 2012, 3, e440-e440.	6.3	10
43	Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Advances, 2020, 4, 5616-5630.	5.2	10
44	Cytogenetic analysis of human cells reveals specific patterns of <scp>DNA</scp> damage in replicative and oncogeneâ€induced senescence. Aging Cell, 2013, 12, 312-315.	6.7	8
45	p38β (MAPK11) mediates gemcitabine-associated radiosensitivity in sarcoma experimental models. Radiotherapy and Oncology, 2021, 156, 136-144.	0.6	7
46	Development of a murine orthotopic model of leukemia: Evaluation of TP53 gene therapy efficacy. Cancer Gene Therapy, 2000, 7, 135-143.	4.6	6
47	Approaching the challenges of MKK3/p38delta MAPK targeting for therapeutic purpose in colorectal cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 504.	8.6	5
48	Dissection of the MKK3 Functions in Human Cancer: A Double-Edged Sword?. Cancers, 2022, 14, 483.	3.7	4
49	Validation of a biomarker tool capable of measuring the absorbed dose soon after exposure to ionizing radiation. Scientific Reports, 2021, 11, 8118.	3.3	2
50	Zinc, a promising mineral for misfolded p53 reactivation. Cell Cycle, 2011, 10, 2416-2416.	2.6	1
51	Mutant p53 and sIL-1Ra. Aging, 2015, 7, 742-743.	3.1	1
52	Abstract 350: Che-1/aatf-induced transcriptionally active chromatin promotes cell growth in multiple myeloma. , 2018, , .		1
53	654. Targeting Adenoviral Vectors for Use in Breast Cancer Gene Therapy. Molecular Therapy, 2006, 13, S252.	8.2	0
54	Abstract 2983: Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation. , 2010, , .		0