Hsiao-feng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3806640/publications.pdf

Version: 2024-02-01

840776 677142 64 620 11 22 citations h-index g-index papers 64 64 64 215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimal Sum Rate-Fairness Tradeoff for MIMO Downlink Communications Employing Successive Zero Forcing Dirty Paper Coding. IEEE Communications Letters, 2021, 25, 783-787.	4.1	6
2	Achieving the Sum Rate Capacity of MIMO Downlink Communications With Better Fairness. IEEE Access, 2021, 9, 161877-161889.	4.2	0
3	On Sum-Rate and Fairness of MIMO Downlink Communications. , 2021, , .		O
4	Achieving Large Sum Rate and Good Fairness in MISO Broadcast Communication. IEEE Transactions on Vehicular Technology, 2019, 68, 5684-5695.	6.3	8
5	Optimal Sum Rate-Fairness Tradeoff for MISO Broadcast Communication Using Zero Forcing DPC. , 2019, , .		1
6	On the MacWilliams Identity for Classical and Quantum Convolutional Codes. IEEE Transactions on Communications, 2016, 64, 3148-3159.	7.8	13
7	Efficiently sphere-decodable physical layer transmission schemes for wireless storage networks. Eurasip Journal on Advances in Signal Processing, 2016, 2016, .	1.7	1
8	Performance-Complexity Analysis for MAC ML-Based Decoding With User Selection. IEEE Transactions on Signal Processing, 2016, 64, 1867-1880.	5. 3	1
9	Optimal Distributed Codes for Feedback-Aided Cooperative Relay Networks. IEEE Transactions on Information Theory, 2016, 62, 4198-4211.	2.4	1
10	Rate-split based decode-and-forward protocols for cooperative communications., 2015,,.		0
11	Selection and Rate-Adaptation Schemes for MIMO Multiple-Access Channels With Low-Rate Channel Feedback. IEEE Transactions on Information Theory, 2015, 61, 5948-5975.	2.4	5
12	An Error Event Sensitive Tradeoff Between Rate and Coding Gain in MIMO MAC. IEEE Transactions on Information Theory, 2015, 61, 5931-5947.	2.4	0
13	A complete MacWilliams theorem for convolutional codes. , 2014, , .		1
14	Space-time storage codes for wireless distributed storage systems. , 2014, , .		5
15	Coding schemes with constant sphere-decoding complexity and high DMT performance for MIMO multiple access channels with low-rate feedback. , 2014, , .		2
16	Improving the DMT Performance for MIMO Communication With Linear Receivers. IEEE Transactions on Vehicular Technology, 2013, 62, 1189-1200.	6.3	4
17	Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra. IEEE Transactions on Information Theory, 2013, 59, 6060-6082.	2.4	14
18	Analysis and practice of uniquely decodable one-to-one code. , 2013, , .		0

#	Article	IF	CITATIONS
19	Remarks on Diversity-Multiplexing Tradeoffs for Multiple-Access and Point-to-Point MIMO Channels. IEEE Transactions on Information Theory, 2012, 58, 858-863.	2.4	4
20	Diversity-multiplexing gain tradeoff: A tool in algebra?. , 2011, , .		4
21	DMT Optimal Codes Constructions for Multiple-Access MIMO Channel. IEEE Transactions on Information Theory, 2011, 57, 3594-3617.	2.4	17
22	Improving the DMT performances of MIMO linear receivers. , 2011, , .		0
23	An algebraic look into MAC-DMT of lattice space-time codes. , 2011, , .		4
24	Optimal Diversity–Multiplexing Tradeoff and Code Constructions of Some Constrained Asymmetric MIMO Systems. IEEE Transactions on Information Theory, 2010, 56, 2121-2129.	2.4	9
25	Diversity-multiplexing tradeoff in MIMO Gaussian interference channels. , 2010, , .		0
26	Some simple observations on MISO codes. , 2010, , .		4
27	Approximately universal MIMO diversity embedded codes. , 2010, , .		1
28	On the decay of the determinants of multiuser MIMO lattice codes. , 2010, , .		3
29	Remarks on the criteria of constructing MIMO-MAC DMT optimal codes. , 2010, , .		8
30	An algebraic tool for obtaining conditional non-vanishing determinants. , 2009, , .		3
31	Diversity-multiplexing tradeoff-optimal code constructions for symmetric MIMO multiple access channels., 2009,,.		4
32	Construction Methods for Asymmetric and Multiblock Space–Time Codes. IEEE Transactions on Information Theory, 2009, 55, 1086-1103.	2.4	24
33	New Space–Time Code Constructions for Two-User Multiple Access Channels. IEEE Journal on Selected Topics in Signal Processing, 2009, 3, 939-957.	10.8	20
34	Constructions of Multiblock Space–Time Coding Schemes That Achieve the Diversity–Multiplexing Tradeoff. IEEE Transactions on Information Theory, 2008, 54, 3790-3796.	2.4	32
35	Maximal Orders in the Design of Dense Space-Time Lattice Codes. IEEE Transactions on Information Theory, 2008, 54, 4493-4510.	2.4	35
36	Optimal Diversity Multiplexing Tradeoff of Constrained Asymmetric MIMO Systems., 2008,,.		0

#	Article	IF	Citations
37	Constructions of fully-diverse high-rate space-frequency codes for asynchronous cooperative relay networks. , 2008, , .		2
38	Diversity-multiplexing tradeoff optimal codes for OFDM-based asynchronous cooperative networks. , 2008, , .		O
39	On the construction of DMT-Optimal AST codes with transmit antenna selection. , 2008, , .		0
40	Binary Linear Network Codes. , 2007, , .		3
41	Low Complexity Constructions of Multi-Block Space-Time Codes Achieving Diversity-Multiplexing Tradeoff., 2007,,.		1
42	Optimal Code Constructions for SIMO-OFDM Frequency Selective Fading Channels., 2007,,.		5
43	A Generalized Bose-Chowla Family of Optical Orthogonal Codes and Distinct Difference Sets. IEEE Transactions on Information Theory, 2007, 53, 1907-1910.	2.4	24
44	Constructions of Asymptotically Optimal Space– Frequency Codes for MIMO-OFDM Systems. IEEE Transactions on Information Theory, 2007, 53, 1676-1688.	2.4	6
45	Normalized Minimum Determinant Calculation for Multi-block and Asymmetric Space-Time Codes. , 2007, , 227-236.		4
46	Explicit Constructions of Multi-Block Space-Time Codes That Achieve The Diversity-Multiplexing Tradeoff. , 2006, , .		22
47	On constructions of algebraic space-time codes with AM-PSK constellations satisfying rate-diversity tradeoff. IEEE Transactions on Information Theory, 2006, 52, 3198-3209.	2.4	4
48	On the conjectures of SU(3) and AB unitary space-time codes. IEEE Transactions on Information Theory, 2006, 52, 3319-3324.	2.4	0
49	A Unified Construction of Space–Time Codes With Optimal Rate–Diversity Tradeoff. IEEE Transactions on Information Theory, 2005, 51, 1709-1730.	2.4	122
50	Space–Time Codes With AM-PSK Constellations. IEEE Transactions on Information Theory, 2005, 51, 4355-4358.	2.4	0
51	Explicit space-time codes that achieve the diversity-multiplexing gain tradeoff. , 2005, , .		24
52	On the Input-Output Weight Enumerators of Product Accumulate Codes. IEEE Communications Letters, 2004, 8, 520-522.	4.1	6
53	On Orthogonal Designs and Space-Time Codes. IEEE Communications Letters, 2004, 8, 220-222.	4.1	13
54	Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions for psk modulation. IEEE Transactions on Information Theory, 2003, 49, 2747-2751.	2.4	79

#	Article	IF	CITATIONS
55	Remarks on space-time codes including a new lower bound and an improved code. IEEE Transactions on Information Theory, 2003, 49, 2752-2757.	2.4	51
56	Rate-diversity tradeoff of space-time codes with fixed alphabet and optimal constructions. , 2003, , .		3
57	On pairwise error probability of space-time codes. , 0, , .		O
58	On orthogonal designs and space-time codes. , 0, , .		O
59	On the performance of space-time codes. , 0, , .		13
60	Constructing optimal space-time codes over various signal constellations. , 0, , .		1
61	Algebraic constructions of optimal space-time trellis codes. , 0, , .		1
62	Generalized unified construction of space-time codes with optimal rate-diversity tradeoff. , 0, , .		1
63	Optimal constructions of space-time codes over multiple fading blocks. , 0, , .		1
64	Generalized super-unified constructions for space-time codes. , 0, , .		0