Zi Shuai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3806634/publications.pdf

Version: 2024-02-01

		26610	33869
169	10,769	56	99
papers	citations	h-index	g-index
172	172	172	11833
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Stability of electroluminescent perovskite quantum dots lightâ€emitting diode. Nano Select, 2022, 3, 505-530.	1.9	10
2	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	7.8	14
3	Highâ€Performance Semitransparent Organic Solar Cells Enabled by Improved Charge Transport and Optical Engineering of Ternary Blend Active Layer. Solar Rrl, 2022, 6, 2100785.	3.1	12
4	Recent Progress on Emerging Transparent Metallic Electrodes for Flexible Organic and Perovskite Photovoltaics. Solar Rrl, 2022, 6, .	3.1	14
5	1â€Chloronaphthaleneâ€Induced Donor/Acceptor Vertical Distribution and Carrier Dynamics Changes in Nonfullerene Organic Solar Cells and the Governed Mechanism. Small Methods, 2022, 6, e2101475.	4.6	19
6	High-Performance Blue Quasi-2D Perovskite Light-Emitting Diodes via Balanced Carrier Confinement and Transfer. Nano-Micro Letters, 2022, 14, 66.	14.4	34
7	Efficient CsPbBr ₃ Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands. ACS Energy Letters, 2022, 7, 1137-1145.	8.8	52
8	In Situ Growth Mechanism for Highâ€Quality Hybrid Perovskite Singleâ€Crystal Thin Films with High Area to Thickness Ratio: Looking for the Sweet Spot. Advanced Science, 2022, 9, e2104788.	5.6	16
9	Multifunctional Ion‣ock Interface Layer Achieved by Solid–Solid Contact Approach for Stabilizing Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	20
10	Electron Delocalization in CsPbl ₃ Quantum Dots Enables Efficient Lightâ€Emitting Diodes with Improved Efficiency Rollâ€Off. Advanced Optical Materials, 2022, 10, .	3.6	16
11	Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective. Advanced Energy Materials, 2022, 12, .	10.2	87
12	Energy Regulation in White-Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 2173-2188.	8.8	26
13	Capacitance–voltage characteristics of perovskite light-emitting diodes: Modeling and implementing on the analysis of carrier behaviors. Applied Physics Letters, 2022, 120, .	1.5	16
14	An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 371-379.	5. 2	30
15	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171
16	Perovskite Lightâ€Emitting Diodes: Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers (Adv. Mater. 1/2021). Advanced Materials, 2021, 33, 2170006.	11.1	5
17	Observing and Understanding the Corrosion of Silver Nanowire Electrode by Precursor Reagents and MAPbl ₃ Film in Different Environmental Conditions. Advanced Materials Interfaces, 2021, 8, 2001669.	1.9	5
18	Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites. Advanced Energy Materials, 2021, 11, 2003071.	10.2	28

#	Article	IF	CITATIONS
19	Evaporationâ€Free Organic Solar Cells with High Efficiency Enabled by Dry and Nonimmersive Sintering Strategy. Advanced Functional Materials, 2021, 31, 2010764.	7.8	8
20	Efficient Semiâ€Transparent Organic Solar Cells with High Color Rendering Index Enabled by Selfâ€Assembled and Knitted AgNPs/MWCNTs Transparent Top Electrode via Solution Process. Advanced Optical Materials, 2021, 9, 2002108.	3.6	16
21	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	11.1	119
22	Lead Halide Perovskites: Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites (Adv. Energy Mater. 9/2021). Advanced Energy Materials, 2021, 11, 2170036.	10.2	0
23	Recent Developments in Organic Tandem Solar Cells toward High Efficiency. Advanced Energy and Sustainability Research, 2021, 2, 2000050.	2.8	12
24	Hybrid 3D Nanostructure-Based Hole Transport Layer for Highly Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Solar 13, 16611-16619.	4.0	10
25	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	7.8	16
26	Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2100205.	7.8	24
27	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	7.8	51
28	Strategies Toward Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2100516.	7.8	92
29	Upside-Down Molding Approach for Geometrical Parameter-Tunable Photonic Perovskite Nanostructures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27313-27322.	4.0	2
30	Efficient Gradient Potential Top Electron Transport Structures Achieved by Combining an Oxide Family for Inverted Perovskite Solar Cells with High Efficiency and Stability. ACS Applied Materials & Discrete Interfaces, 2021, 13, 27179-27187.	4.0	13
31	Inorganic top electron transport layer for high performance inverted perovskite solar cells. EcoMat, 2021, 3, e12127.	6.8	26
32	Operational and Spectral Stability of Perovskite Light-Emitting Diodes. ACS Energy Letters, 2021, 6, 3114-3131.	8.8	46
33	Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin–Lead Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45059-45067.	4.0	18
34	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
35	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
36	Solutionâ€Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials, 2020, 10, 1900903.	10.2	44

#	Article	IF	CITATIONS
37	The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Materials Horizons, 2020, 7, 934-942.	6.4	51
38	Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2569-2579.	8.8	89
39	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1, .	2.9	33
40	Establishing Multifunctional Interface Layer of Perovskite Ligand Modified Lead Sulfide Quantum Dots for Improving the Performance and Stability of Perovskite Solar Cells. Small, 2020, 16, e2002628.	5.2	20
41	Triple Interface Passivation Strategyâ€Enabled Efficient and Stable Inverted Perovskite Solar Cells. Small Methods, 2020, 4, 2000478.	4.6	44
42	Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000408.	3.1	43
43	Green Electronics: Biodegradable Materials and Green Processing for Green Electronics (Adv. Mater.) Tj ETQq 1	1 0.78431 11.1	14 rgBT /Overloo
44	Critical Role of Functional Groups in Defect Passivation and Energy Band Modulation in Efficient and Stable Inverted Perovskite Solar Cells Exceeding 21% Efficiency. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57165-57173.	4.0	24
45	High Phase Stability in CsPbI ₃ Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics. Advanced Materials, 2020, 32, e2000186.	11.1	90
46	Transient Photovoltage Measurements on Perovskite Solar Cells with Varied Defect Concentrations and Inhomogeneous Recombination Rates. Small Methods, 2020, 4, 2000290.	4.6	36
47	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Los Amp; Interfaces, 2020, 12, 24498-24504.	4.0	14
48	Solar Cells: High Phase Stability in CsPbl ₃ Enabled by Pb–I Octahedra Anchors for Efficient Inorganic Perovskite Photovoltaics (Adv. Mater. 24/2020). Advanced Materials, 2020, 32, 2070185.	11.1	3
49	Realizing the ultimate goal of fully solution-processed organic solar cells: a compatible self-sintering method to achieve silver back electrode. Journal of Materials Chemistry A, 2020, 8, 6083-6091.	5.2	7
50	High Performance Flexible Transparent Electrode via Oneâ€Step Multifunctional Treatment for Ag Nanonetwork Composites Semiâ€Embedded in Lowâ€Temperatureâ€Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1903919.	10.2	58
51	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	11.1	168
52	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasiâ€Core–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	10.2	31
53	Electron-pinned defect dipoles in (Li, Al) co-doped ZnO ceramics with colossal dielectric permittivity. Journal of Materials Chemistry A, 2020, 8, 4764-4774.	5.2	26
54	Organic Photovoltaics: High Performance Flexible Transparent Electrode via Oneâ€Step Multifunctional Treatment for Ag Nanonetwork Composites Semiâ€Embedded in Lowâ€Temperatureâ€Processed Substrate for Highly Performed Organic Photovoltaics (Adv. Energy) Tj ETQq0	0 0 10 2 /	Overlock 10 Tf

#	Article	IF	Citations
55	Efficient Interconnection in Perovskite Tandem Solar Cells. Small Methods, 2020, 4, 2000093.	4.6	43
56	Hole Transport Bilayer Structure for Quasiâ€2D Perovskite Based Blue Lightâ€Emitting Diodes with High Brightness and Good Spectral Stability. Advanced Functional Materials, 2019, 29, 1905339.	7.8	92
57	Modeling and Analysis for Modulation of Light-Conversion Materials in Visible Light Communication. IEEE Photonics Journal, 2019, 11, 1-13.	1.0	5
58	Device Physics of the Carrier Transporting Layer in Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900407.	3.6	34
59	A General Method: Designing a Hypocrystalline Hydroxide Intermediate to Achieve Ultrasmall and Wellâ€Dispersed Ternary Metal Oxide for Efficient Photovoltaic Devices. Advanced Functional Materials, 2019, 29, 1904684.	7.8	39
60	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	7.3	40
61	Multifunctional Synthesis Approach of In:CuCrO ₂ Nanoparticles for Hole Transport Layer in Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1902600.	7.8	70
62	Soldering Grain Boundaries Yields Inverted Perovskite Solar Cells with Enhanced Openâ€Circuit Voltages. Advanced Materials Interfaces, 2019, 6, 1900474.	1.9	17
63	How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. Journal of Materials Chemistry A, 2019, 7, 23838-23853.	5.2	57
64	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
65	Enhanced Silver Nanowire Composite Window Electrode Protected by Large Size Graphene Oxide Sheets for Perovskite Solar Cells. Nanomaterials, 2019, 9, 193.	1.9	23
66	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
67	Highâ€Quality Cuboid CH ₃ NH ₃ Pbl ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	7.8	115
68	Solutionâ€Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804660.	7.8	105
69	Strategic Synthesis of Ultrasmall NiCo ₂ O ₄ NPs as Hole Transport Layer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702722.	10.2	112
70	Sequential Processing: Spontaneous Improvements in Film Quality and Interfacial Engineering for Efficient Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800027.	3.1	33
71	The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells. AIP Advances, 2018, 8, .	0.6	17
72	Lowâ€Bandgap Methylammoniumâ€Rubidium Cation Snâ€Rich Perovskites for Efficient Ultraviolet–Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2018, 28, 1706068.	7.8	70

#	Article	IF	CITATIONS
73	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€Type Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	7.8	39
74	Emerging Novel Metal Electrodes for Photovoltaic Applications. Small, 2018, 14, e1703140.	5.2	73
75	Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model. Advanced Energy Materials, 2018, 8, 1701586.	10.2	82
76	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
77	Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solutionâ€Processed Perovskites. Advanced Energy Materials, 2018, 8, 1801954.	10.2	40
78	Thick TiO ₂ -Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells. ACS Energy Letters, 2018, 3, 2891-2898.	8.8	71
79	Solar Cells: Thermionic Emission-Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites (Adv. Energy Mater. 36/2018). Advanced Energy Materials, 2018, 8, 1870155.	10.2	2
80	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	7.3	92
81	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
82	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
83	Novel Direct Nanopatterning Approach to Fabricate Periodically Nanostructured Perovskite for Optoelectronic Applications. Advanced Functional Materials, 2017, 27, 1606525.	7.8	101
84	Controllable Crystallization of CH ₃ 56.259b _{0.75} 1 ₃ 9erovskites for Hysteresisâ€Free Solar Cells with Efficiency Reaching 15.2%. Advanced Functional Materials, 2017, 27, 1605469.	7.8	84
85	Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation. Advanced Materials, 2017, 29, 1604695.	11.1	178
86	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213
87	Perovskite Films: Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation (Adv. Mater. 13/2017). Advanced Materials, 2017, 29, .	11.1	4
88	Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model. ACS Photonics, 2017, 4, 934-942.	3.2	98
89	Recent progress of interconnecting layer for tandem organic solar cells. Science China Chemistry, 2017, 60, 460-471.	4.2	21
90	Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells. Science China Chemistry, 2017, 60, 472-489.	4.2	52

#	Article	IF	Citations
91	Room temperature formation of organic–inorganic lead halide perovskites: design of nanostructured and highly reactive intermediates. Journal of Materials Chemistry A, 2017, 5, 3599-3608.	5.2	48
92	Highly Efficient Ternaryâ€Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Advanced Materials, 2017, 29, 1704271.	11.1	221
93	Effects of Selfâ€Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. ChemSusChem, 2017, 10, 3794-3803.	3.6	185
94	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29
95	Organic Solar Cells: A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
96	Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale. Small, 2016, 12, 1547-1571.	5.2	77
97	Exciton delocalization incorporated drift-diffusion model for bulk-heterojunction organic solar cells. Journal of Applied Physics, 2016, 120, .	1.1	18
98	New low-temperature solution processes to control the formation of perovskite films for achieving high performance solar cells. , 2016 , , .		0
99	A new concept to break the space charge limit of organic semiconductors for photovoltaic applications. , $2016, \ldots$		0
100	Organic Solar Cells: High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars (Small 37/2016). Small, 2016, 12, 5102-5102.	5.2	4
101	High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016, 12, 5200-5207.	5.2	73
102	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	1.5	64
103	Polarization Control by Using Anisotropic 3-D Chiral Structures. IEEE Transactions on Antennas and Propagation, 2016, 64, 4687-4694.	3.1	27
104	A Comprehensive multiphysics model for organic photovoltaics. , 2016, , .		0
105	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	2.1	105
106	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	2.8	43
107	Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics. Small, 2016, 12, 416-431.	5.2	67
108	Room-Temperature Solution-Processed NiO _{<i>x</i>} :Pbl ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	7.3	122

7

#	Article	IF	CITATIONS
109	Characterization, modeling, and analysis of organic light-emitting diodes with different structures. IEEE Transactions on Power Electronics, 2016, 31, 581-592.	5.4	21
110	Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946-5953.	2.8	83
111	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
112	Pinhole-Free and Surface-Nanostructured NiO _{<i>x</i>} Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016, 10, 1503-1511.	7.3	477
113	Plasmon-Electrical Effects on Organic Solar Cells by Incorporation of Metal Nanostructures. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-9.	1.9	49
114	Nanostructures: A Smooth CH ₃ NH ₃ Pbl ₃ Film via a New Approach for Forming the Pbl ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ I Concentration for High Efficient Planarâ€Heterojunction Solar Cells (Adv. Energy Mater. 23/2015). Advanced Energy Materials, 2015, 5, .	10.2	10
115	Optoelectronics: Locally Welded Silver Nanoâ€Network Transparent Electrodes with High Operational Stability by a Simple Alcoholâ€Based Chemical Approach (Adv. Funct. Mater. 27/2015). Advanced Functional Materials, 2015, 25, 4174-4174.	7.8	3
116	A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect. Scientific Reports, 2015, 5, 8525.	1.6	44
117	Locally Welded Silver Nanoâ€Network Transparent Electrodes with High Operational Stability by a Simple Alcoholâ€Based Chemical Approach. Advanced Functional Materials, 2015, 25, 4211-4218.	7.8	131
118	A Smooth CH ₃ NH ₃ Pbl ₃ Film via a New Approach for Forming the Pbl ₂ Nanostructure Together with Strategically High CH ₃ NH ₃ ! Concentration for High Efficient Planarâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1501354.	10.2	228
119	A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1500631.	10.2	37
120	Organic–Inorganic Perovskite Lightâ€Emitting Electrochemical Cells with a Large Capacitance. Advanced Functional Materials, 2015, 25, 7226-7232.	7.8	87
121	Synergic Effects of Randomly Aligned SWCNT Mesh and Selfâ€Assembled Molecule Layer for Highâ€Performance, Lowâ€Bandgap, Polymer Solar Cells with Fast Charge Extraction. Advanced Materials Interfaces, 2015, 2, 1500324.	1.9	22
122	Solid Electrolytes: Organic-Inorganic Perovskite Light-Emitting Electrochemical Cells with a Large Capacitance (Adv. Funct. Mater. 46/2015). Advanced Functional Materials, 2015, 25, 7243-7243.	7.8	1
123	The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106, .	1.5	480
124	Organic Solar Cells: A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells (Adv. Energy Mater. 17/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	3
125	Experimental and Theoretical Investigation of Macro-Periodic and Micro-Random Nanostructures with Simultaneously Spatial Translational Symmetry and Long-Range Order Breaking. Scientific Reports, 2015, 5, 7876.	1.6	10
126	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34

#	Article	IF	Citations
127	Highâ€Performance Organic Solar Cells with Broadband Absorption Enhancement and Reliable Reproducibility Enabled by Collective Plasmonic Effects. Advanced Optical Materials, 2015, 3, 1220-1231.	3.6	66
128	Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Science China Chemistry, 2015, 58, 347-356.	4.2	12
129	Postâ€treatmentâ€Free Solutionâ€Processed Nonâ€stoichiometric NiO <i>_x</i> Nanoparticles for Efficient Holeâ€Transport Layers of Organic Optoelectronic Devices. Advanced Materials, 2015, 27, 2930-2937.	11.1	300
130	Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. Journal of Materials Chemistry A, 2015, 3, 23955-23963.	5.2	40
131	Smooth CH ₃ NH ₃ Pbl ₃ from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.	1.7	17
132	Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes. Nanoscale, 2015, 7, 16798-16804.	2.8	11
133	Observing abnormally large group velocity at the plasmonic band edge via a universal eigenvalue analysis. Optics Letters, 2014, 39, 158.	1.7	10
134	Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 7348-7356.	7.8	44
135	Lending Triarylphosphine Oxide to Phenanthroline: a Facile Approach to Highâ€Performance Organic Smallâ€Molecule Cathode Interfacial Material for Organic Photovoltaics utilizing Airâ€Stable Cathodes. Advanced Functional Materials, 2014, 24, 6540-6547.	7.8	96
136	Nanospacers: Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film–Metal Nanoparticle Coupling System (Adv. Funct. Mater. 21/2014). Advanced Functional Materials, 2014, 24, 3113-3113.	7.8	2
137	Recent Advances in Transition Metal Complexes and Lightâ€Management Engineering in Organic Optoelectronic Devices. Advanced Materials, 2014, 26, 5368-5399.	11.1	266
138	Photovoltaic Mode Ultraviolet Organic Photodetectors with High On/Off Ratio and Fast Response. Advanced Optical Materials, 2014, 2, 1082-1089.	3.6	37
139	Selective Growth and Integration of Silver Nanoparticles on Silver Nanowires at Room Conditions for Transparent Nano-Network Electrode. ACS Nano, 2014, 8, 10980-10987.	7.3	119
140	The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chemical Communications, 2014, 50, 11984-11993.	2.2	45
141	Highly Intensified Surface Enhanced Raman Scattering by Using Monolayer Graphene as the Nanospacer of Metal Film–Metal Nanoparticle Coupling System. Advanced Functional Materials, 2014, 24, 3114-3122.	7.8	171
142	Polarity continuation and frustration in ZnSe nanospirals. Scientific Reports, 2014, 4, 7447.	1.6	7
143	Breaking the Space Charge Limit in Organic Solar Cells by a Novel Plasmonic-Electrical Concept. Scientific Reports, 2014, 4, 6236.	1.6	62
144	Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy and Environmental Science, 2013, 6, 3372.	15.6	95

#	Article	IF	Citations
145	Plasmonic Electrically Functionalized TiO ₂ for Highâ€Performance Organic Solar Cells. Advanced Functional Materials, 2013, 23, 4255-4261.	7.8	138
146	Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode. Applied Physics Letters, 2013, 102, 153304.	1.5	48
147	Al-TiO ₂ Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for Organic Solar Cells. ACS Nano, 2013, 7, 1740-1747.	7.3	90
148	Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6614.	5.2	89
149	Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Applied Physics Letters, 2013, 102, 113303.	1.5	49
150	The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells. Applied Physics Letters, 2012, 101, .	1.5	15
151	Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells. Journal of Materials Chemistry, 2012, 22, 1206-1211.	6.7	222
152	Surface Plasmon and Scatteringâ€Enhanced Lowâ€Bandgap Polymer Solar Cell by a Metal Grating Back Electrode. Advanced Energy Materials, 2012, 2, 1203-1207.	10.2	160
153	Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. Journal of Materials Chemistry, 2011, 21, 16349.	6.7	259
154	Largely extended light-emission shift of ZnSe nanostructures with temperature. Applied Optics, 2011, 50, G37.	2.1	5
155	Angular response of thin-film organic solar cells with periodic metal back nanostrips. Optics Letters, 2011, 36, 478.	1.7	62
156	Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode. Applied Physics Letters, 2011, 99, 223302.	1.5	43
157	Optical design of organic/polymer solar cells and light emitting devices. , 2011, , .		0
158	Improving polymer solar cell performances by manipulating the self-organization of polymer. Applied Physics Letters, 2011, 98, .	1.5	12
159	Magnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effect. Physical Review B, 2010, 82, .	1.1	20
160	Twinning mediated growth of ZnSe tri- and bi-crystal nanobelts with single crystalline wurtzite nanobelts as building blocks. CrystEngComm, 2010, 12, 150-158.	1.3	9
161	Improving efficiency roll-off in organic light emitting devices with a fluorescence-interlayer-phosphorescence emission architecture. Applied Physics Letters, 2009, 95, 133304.	1.5	22
162	Indium Tin Oxide Modified by Au and Vanadium Pentoxide as an Efficient Anode for Organic Light-Emitting Devices. IEEE Transactions on Electron Devices, 2008, 55, 2517-2520.	1.6	22

#	Article	IF	CITATIONS
163	Real-Time Color-Tunable Electroluminescence From Stacked Organic LEDs Using Independently Addressable Middle Electrode. IEEE Photonics Technology Letters, 2008, 20, 1154-1156.	1.3	3
164	Highly efficient and tunable fluorescence of a nanofluorophore in silica/metal dual shells with plasmonic resonance. Journal of Applied Physics, 2008, 103 , .	1.1	5
165	Simulation of light emission from a semiconductor nanowire/nanotube. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
166	Efficient and Rigorous Modeling of Light Emission in Planar Multilayer Organic Light-Emitting Diodes. Journal of Display Technology, 2007, 3, 110-117.	1.3	36
167	The Electroluminescent Decay Mechanism of Rare-Earth Ions in OLEDs Based on a Terbium Complex. IEEE Photonics Technology Letters, 2007, 19, 1178-1180.	1.3	4
168	ZnO Nanorods on In-Situ Synthesized ZnSe Grains. Journal of Nanoscience and Nanotechnology, 2006, 6, 802-806.	0.9	4
169	Electro-absorptive properties of interdiffused InGaAsP/InP quantum wells. Journal of Applied Physics, 1997, 82, 3861-3869.	1.1	13