Thomas D Bruns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3805247/publications.pdf

Version: 2024-02-01

53794 79698 10,130 77 45 73 citations h-index g-index papers 83 83 83 9330 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environmental Microbiology, 2021, 23, 99-109.	3.8	12
2	High resilience of the mycorrhizal community to prescribed seasonal burnings in eastern Mediterranean woodlands. Mycorrhiza, 2021, 31, 203-216.	2.8	8
3	A non-linear effect of the spatial structure of the soil ectomycorrhizal spore bank on the performance of pine seedlings. Mycorrhiza, 2021, 31, 325-333.	2.8	3
4	Symbiotic interactions above treeline of longâ€lived pines: Mycorrhizal advantage of limber pine (⟨i⟩Pinus flexilis⟨li⟩) over Great Basin bristlecone pine (⟨i⟩Pinus longaeva⟨li⟩) at the seedling stage. Journal of Ecology, 2020, 108, 908-916.	4.0	16
5	Pyrophilous fungi detected after wildfires in the Great Smoky Mountains National Park expand known species ranges and biodiversity estimates. Mycologia, 2020, 112, 677-698.	1.9	25
6	A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species. PLoS ONE, 2020, 15, e0222691.	2.5	52
7	Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. Journal of Biogeography, 2020, 47, 772-782.	3.0	42
8	Title is missing!. , 2020, 15, e0222691.		0
9	Title is missing!. , 2020, 15, e0222691.		0
10	Title is missing!. , 2020, 15, e0222691.		0
11	Title is missing!. , 2020, 15, e0222691.		0
12	Title is missing!. , 2020, 15, e0222691.		0
13	Title is missing!. , 2020, 15, e0222691.		O
14	<i>Rhizopogon olivaceotinctus</i> increases its inoculum potential in heated soil independent of competitive release from other ectomycorrhizal fungi. Mycologia, 2019, 111, 936-941.	1.9	11
15	Genomeâ€based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology, 2019, 28, 721-730.	3.9	163
16	Suilloid fungi as global drivers of pine invasions. New Phytologist, 2019, 222, 714-725.	7.3	97
17	The developing relationship between the study of fungal communities and community ecology theory. Fungal Ecology, 2019, 39, 393-402.	1.6	15
18	Competition–colonization tradeoffs structure fungal diversity. ISME Journal, 2018, 12, 1758-1767.	9.8	91

#	Article	IF	CITATIONS
19	Glomeromycotina: what is a species and why should we care?. New Phytologist, 2018, 220, 963-967.	7. 3	51
20	Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia, 2017, 109, 115-127.	1.9	31
21	The theory of island biogeography applies to ectomycorrhizal fungi in subalpine tree "islands―at a fine scale. Ecosphere, 2017, 8, e01677.	2.2	43
22	Smallâ€scale spatial variability in the distribution of ectomycorrhizal fungi affects plant performance and fungal diversity. Ecology Letters, 2017, 20, 1192-1202.	6.4	21
23	Environmental filtering by <scp>pH</scp> and soil nutrients drives community assembly in fungi at fine spatial scales. Molecular Ecology, 2017, 26, 6960-6973.	3.9	223
24	Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types. Mycorrhiza, 2017, 27, 165-174.	2.8	17
25	Continentalâ€evel population differentiation and environmental adaptation in the mushroom <i><scp>S</scp>uillus brevipes</i> . Molecular Ecology, 2017, 26, 2063-2076.	3.9	55
26	Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. Microbiome, 2017, 5, 128.	11.1	45
27	Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.	12.6	59
28	Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME Journal, 2016, 10, 1228-1239.	9.8	156
29	Phylogenetic assessment of global Suillus ITS sequences supports morphologically defined species and reveals synonymous and undescribed taxa. Mycologia, 2016, 108, 1216-1228.	1.9	22
30	Passive dust collectors for assessing airborne microbial material. Microbiome, 2015, 3, 46.	11.1	55
31	A continental view of pineâ€essociated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytologist, 2015, 205, 1619-1631.	7. 3	126
32	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	3.9	100
33	Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels, 2015, 8, 38.	6.2	41
34	Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes. PLoS ONE, 2015, 10, e0128022.	2.5	168
35	Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi. PLoS ONE, 2014, 9, e91283.	2.5	120
36	Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6341-6346.	7.1	482

3

#	Article	IF	Citations
37	Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant–fungal interactions. New Phytologist, 2014, 204, 180-191.	7.3	166
38	A Unique Signal Distorts the Perception of Species Richness and Composition in High-Throughput Sequencing Surveys of Microbial Communities: a Case Study of Fungi in Indoor Dust. Microbial Ecology, 2013, 66, 735-741.	2.8	52
39	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997
40	Stayin' alive: survival of mycorrhizal fungal propagules from 6-yr-old forest soil. Fungal Ecology, 2012, 5, 741-746.	1.6	85
41	Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Molecular Ecology, 2012, 21, 4122-4136.	3.9	331
42	Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation?. Fungal Ecology, 2011, 4, 233-240.	1.6	155
43	Testing the ecological stability of ectomycorrhizal symbiosis: effects of heat, ash and mycorrhizal colonization on Pinus muricata seedling performance. Plant and Soil, 2010, 330, 291-302.	3.7	10
44	<i>Suillus quiescens $$ /i >, a new species commonly found in the spore bank in California and Oregon. Mycologia, 2010, 102, 438-446.</i>	1.9	10
45	Spore heat resistance plays an important role in disturbanceâ€mediated assemblage shift of ectomycorrhizal fungi colonizing <i>Pinus muricata</i> seedlings. Journal of Ecology, 2009, 97, 537-547.	4.0	112
46	Inoculum potential of ⟨i⟩Rhizopogon⟨/i⟩ spores increases with time over the first 4 yr of a 99â€yr spore burial experiment. New Phytologist, 2009, 181, 463-470.	7.3	150
47	Water sources and controls on waterâ€loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytologist, 2009, 182, 483-494.	7.3	45
48	Isotopic evidence of full and partial mycoâ€heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytologist, 2009, 182, 719-726.	7.3	73
49	Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 2009, 79, 619-635.	5.4	72
50	A strong species?area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecology Letters, 2007, 10, 470-480.	6.4	329
51	Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. Journal of Ecology, 2007, 95, 1338-1345.	4.0	77
52	Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 2007, 17, 439-447.	2.8	75
53	Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia, 2006, 98, 374-383.	1.9	24
54	The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycological Research, 2006, 110, 196-202.	2.5	73

#	Article	IF	CITATIONS
55	Spore dispersal of a resupinate ectomycorrhizal fungus, <i>Tomentella sublilacina, </i> via soil food webs. Mycologia, 2005, 97, 762-769.	1.9	96
56	Detection of plotâ€level changes in ectomycorrhizal communities across years in an oldâ€growth mixedâ€conifer forest. New Phytologist, 2005, 166, 619-630.	7.3	211
57	Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytologist, 2005, 166, 631-638.	7.3	140
58	Isolation and characterization of microsatellite loci from the truffle-like ectomycorrhizal fungi Rhizopogon occidentalis and Rhizopogon vulgaris. Molecular Ecology Notes, 2005, 5, 608-610.	1.7	7
59	Root colonization dynamics of two ectomycorrhizal fungi of contrasting life history strategies are mediated by addition of organic nutrient patches. New Phytologist, 2003, 159, 141-151.	7.3	70
60	Phylogeny and taxonomy of <i>Macrolepiota </i> (Agaricaceae). Mycologia, 2003, 95, 442-456.	1.9	70
61	<i>Rhizopogon</i> spore bank communities within and among California pine forests. Mycologia, 2003, 95, 603-613.	1.9	61
62	Host Specificity in Ectomycorrhizal Communities: What Do the Exceptions Tell Us?. Integrative and Comparative Biology, 2002, 42, 352-359.	2.0	226
63	The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 2001, 10, 1855-1871.	3.9	683
64	Nitrogen and ectomycorrhizal fungal communities: what we know, what we need to know. New Phytologist, 2001, 149, 156-158.	7.3	48
65	Small genets of Lactarius xanthogalactus , Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Molecular Ecology, 2001, 10, 1025-1034.	3.9	151
66	In vitro germination of nonphotosynthetic, mycoâ€heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytologist, 2000, 148, 335-342.	7.3	68
67	Molecular phylogeny of the arbuscular mycorrhizal fungi <i>Glomus sinuosum</i> and <i>Sclerocystis coremioides</i> . Mycologia, 2000, 92, 282-285.	1.9	34
68	Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) species complex. American Journal of Botany, 2000, 87, 1778-1782.	1.7	44
69	Population, habitat and genetic correlates of mycorrhizal specialization in the 'cheating' orchids Corallorhiza maculata and C. mertensiana. Molecular Ecology, 1999, 8, 1719-1732.	3.9	157
70	Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
71	Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytologist, 1998, 138, 533-542.	7.3	157
72	Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist, 1998, 139, 331-339.	7.3	231

#	Article	IF	CITATIONS
73	Phylogenetic relationships among the pine stem rust fungi (<i>Cronartium</i> and <i>Peridermium</i>) Tj ETQq1	1.0.78431 1.9	l4 rgBT /O∨ 82
74	Cryptic species in the <i>Puccinia monoica</i> complex. Mycologia, 1998, 90, 846-853.	1.9	38
75	Heterokaryosis Is Not Required for Virulence of Heterobasidion annosum. Mycologia, 1997, 89, 92.	1.9	24
76	Heterokaryosis is not required for virulence of <i>Heterobasidion annosum </i> . Mycologia, 1997, 89, 92-102.	1.9	48
77	Molecular revisitation of the genus Gastrosuillus. Mycologia, 1997, 89, 586-589.	1.9	48