Tom Wauters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3804279/publications.pdf

Version: 2024-02-01

516710 610901 47 713 16 24 h-index citations g-index papers 47 47 47 844 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase. Physics of Plasmas, 2019, 26, .	1.9	83
2	Recent results on Ion Cyclotron Wall Conditioning in mid and large size tokamaks. Journal of Nuclear Materials, 2011, 415, S1021-S1028.	2.7	41
3	Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X. Physics of Plasmas, 2014, 21, .	1.9	35
4	First divertor physics studies in Wendelstein 7-X. Nuclear Fusion, 2019, 59, 096014.	3 . 5	34
5	Overview of the TCV tokamak experimental programme. Nuclear Fusion, 2022, 62, 042018.	3. 5	30
6	Wall conditioning for ITER: Current experimental and modeling activities. Journal of Nuclear Materials, 2015, 463, 150-156.	2.7	28
7	Simulation of ITER full-field ICWC scenario in JET: RF physics aspects. Plasma Physics and Controlled Fusion, 2012, 54, 074014.	2.1	26
8	Impact of boronizations on impurity sources and performance in Wendelstein 7-X. Nuclear Fusion, 2020, 60, 086007.	3.5	26
9	Wall conditioning in fusion devices with superconducting coils. Plasma Physics and Controlled Fusion, 2020, 62, 034002.	2.1	25
10	Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X. EPJ Web of Conferences, 2017, 157, 02008.	0.3	23
11	Investigation of plasma wall interactions between tungsten plasma facing components and helium plasmas in the WEST tokamak. Nuclear Fusion, 2022, 62, 076028.	3.5	22
12	OD model of magnetized hydrogen–helium wall conditioning plasmas. Plasma Physics and Controlled Fusion, 2011, 53, 125003.	2.1	21
13	Characterization of injection and confinement improvement through impurity induced profile modifications on the Wendelstein 7-X stellarator. Physics of Plasmas, 2021, 28, .	1.9	18
14	Isotope exchange experiments on TEXTOR and TORE SUPRA using Ion Cyclotron Wall Conditioning and Glow Discharge Conditioning. Journal of Nuclear Materials, 2011, 415, S1033-S1036.	2.7	16
15	Isotope exchange by Ion Cyclotron Wall Conditioning on JET. Journal of Nuclear Materials, 2015, 463, 1104-1108.	2.7	16
16	Plasma-wall interaction studies in the full-W ASDEX upgrade during helium plasma discharges. Nuclear Fusion, 2017, 57, 066015.	3.5	16
17	Self-consistent application of ion cyclotron wall conditioning for co-deposited layer removal and recovery of tokamak operation on TEXTOR. Nuclear Fusion, 2013, 53, 123001.	3.5	15
18	Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X. Nuclear Fusion, 2018, 58, 066013.	3 . 5	15

#	Article	IF	CITATIONS
19	Wall conditioning at the Wendelstein 7-X stellarator operating with a graphite divertor. Physica Scripta, 2020, T171, 014063.	2.5	15
20	Wall conditioning throughout the first carbon divertor campaign on Wendelstein 7-X. Nuclear Materials and Energy, 2018, 17, 235-241.	1.3	14
21	Impurity sources and fluxes in W7-X: from the plasma-facing components to the edge layer. Physica Scripta, 2020, T171, 014040.	2.5	14
22	Evaluation of tritium retention in plasma facing components during JET tritium operations. Physica Scripta, 2021, 96, 124075.	2.5	14
23	Development of helium electron cyclotron wall conditioning on TCV. Nuclear Fusion, 2018, 58, 026018.	3.5	13
24	The upgraded TOMAS device: A toroidal plasma facility for wall conditioning, plasma production, and plasma–surface interaction studies. Review of Scientific Instruments, 2021, 92, 023506.	1.3	13
25	First experiments on ICRF discharge generation by a W7-X-like antenna in the Uragan-2M stellarator. Journal of Plasma Physics, 2020, 86, .	2.1	12
26	Plasma–surface interaction in the stellarator W7-X: conclusions drawn from operation with graphite plasma-facing components. Nuclear Fusion, 2022, 62, 016006.	3.5	12
27	Plasma-wall interaction studies in W7-X: main results from the recent divertor operations. Physica Scripta, 2021, 96, 124059.	2.5	10
28	Impact of ion cyclotron wall conditioning on fuel removal from plasma-facing components at TEXTOR. Physica Scripta, 2014, T159, 014017.	2.5	9
29	First experiments on plasma production using field-aligned ICRF fast wave antennas in the large helical device. Nuclear Fusion, 2021, 61, 114004.	3. 5	9
30	A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna. Nuclear Fusion, 2017, 57, 126043.	3.5	8
31	Development of glow discharge and electron cyclotron resonance heating conditioning on W7-X. Nuclear Materials and Energy, 2019, 18, 227-232.	1.3	8
32	RF plasma simulations using the TOMATOR 1D code: a case study for TCV helium ECRH plasmas. Plasma Physics and Controlled Fusion, 2020, 62, 105010.	2.1	8
33	Ion and electron cyclotron wall conditioning in stellarator and tokamak magnetic field configuration on WEGA. , 2014, , .		7
34	Three-dimensional first principles simulation of a hydrogen discharge. Plasma Physics and Controlled Fusion, 2021, 63, 045012.	2.1	7
35	Characterization of neutral particle fluxes from ICWC and ECWC plasmas in the TOMAS facility. Physica Scripta, 2021, 96, 124025.	2.5	7
36	Isotope removal experiment in JET-ILW in view of T-removal after the 2nd DT campaign at JET. Physica Scripta, 2022, 97, 044001.	2.5	7

#	Article	IF	CITATIONS
37	Deuterium and helium outgassing following plasma discharges in WEST: Delayed D outgassing during D-to-He changeover experiments studied with threshold ionization mass spectrometry. Nuclear Materials and Energy, 2021, 26, 100885.	1.3	5
38	Comparative analysis of the plasma parameters of ECR and combined ECR+RF discharges in the TOMAS plasma facility. Plasma Physics and Controlled Fusion, 0, , .	2.1	5
39	Plasma Production in ICRF in the Uragan-2M Stellarator in Hydrogen–Helium Gas Mixture. Journal of Fusion Energy, 2022, 41, .	1.2	5
40	Study of plasma start-up initiated by second harmonic electron cyclotron resonance heating on WEGA experiment. , 2014, , .		4
41	Design of an ICRF system for plasma–wall interactions and RF plasma production studies on TOMAS. Fusion Engineering and Design, 2017, 123, 317-320.	1.9	4
42	Monte Carlo simulation of ICRF discharge initiation in ITER. AIP Conference Proceedings, 2015, , .	0.4	3
43	Investigation of probe surfaces after ion cyclotron wall conditioning in ASDEX upgrade. Nuclear Materials and Energy, 2017, 12, 733-735.	1.3	3
44	Monte Carlo simulation of initial breakdown phase for magnetised toroidal ICRF discharges. , 2014, , .		2
45	Discharge initiation by ICRF antenna in IShTAR. EPJ Web of Conferences, 2017, 157, 03056.	0.3	2
46	TWO-STRAP RF ANTENNA IN URAGAN-2M STELLARATOR. , 2020, , 10-14.		2
47	MODELLING OF RADIO-FREQUENCY WALL CONDITIONING IN SHORT PULSES IN A STELLARATOR., 2021,, 9-14.		1