
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3804174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contact Angles of a Brine on a Bituminous Coal in Compressed Hydrogen. Geophysical Research Letters, 2022, 49, .	4.0	20
2	Evaporation-Driven Flow in Micropillar Arrays: Transport Dynamics and Chemical Analysis under Varied Sample and Ambient Conditions. Analytical Chemistry, 2020, 92, 16043-16050.	6.5	7
3	Precipitation of Drug Particles Using a Gas Antisolvent Process on a High-Pressure Microfluidic Platform. Industrial & Engineering Chemistry Research, 2020, 59, 11905-11913.	3.7	6
4	Loading of 5-fluorouracil onto Halloysite nanotubes for targeted drug delivery using a subcritical gas antisolvent process (GAS). Journal of Supercritical Fluids, 2020, 159, 104756.	3.2	23
5	Microfluidic solvent extraction of rare earth elements from a mixed oxide concentrate leach solution using Cyanex® 572. Chemical Engineering Science, 2016, 148, 212-218.	3.8	77
6	Tuning and predicting the wetting of nanoengineered material surface. Nanoscale, 2016, 8, 4635-4642.	5.6	54
7	The molecular-kinetic approach to wetting dynamics: Achievements and limitations. Advances in Colloid and Interface Science, 2015, 222, 661-669.	14.7	36
8	Elasticity of liquid marbles. Journal of Colloid and Interface Science, 2015, 449, 341-346.	9.4	54
9	Capillary Filling of Nanoscale Channels and Surface Structure. Israel Journal of Chemistry, 2014, 54, 1519-1532.	2.3	17
10	Probing fluid flow using the force measurement capability of optical trapping. Advanced Powder Technology, 2014, 25, 1249-1253.	4.1	6
11	Wetting films: A technique for probing the microscopic meniscus using white light interferometry. Advanced Powder Technology, 2014, 25, 1171-1176.	4.1	6
12	The influence of topography on dynamic wetting. Advances in Colloid and Interface Science, 2014, 206, 275-293.	14.7	98
13	Small surface nanotopography encourages fibroblast and osteoblast cell adhesion. RSC Advances, 2013, 3, 10309.	3.6	59
14	Rolling, penetration and evaporation of alcohol–water drops on coarse and fine hydrophobic powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 639-646.	4.7	14
15	Dynamic Electrowetting and Dewetting of Ionic Liquids at a Hydrophobic Solid–Liquid Interface. Langmuir, 2013, 29, 2631-2639.	3.5	47
16	Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. Journal of the American Chemical Society, 2013, 135, 7159-7171.	13.7	48
17	A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities. Colloid and Polymer Science, 2013, 291, 271-277.	2.1	14
18	Yielding and fracturing of concentrated emulsions in narrow gaps. Soft Matter, 2013, 9, 5975.	2.7	5

#	Article	IF	CITATIONS
19	Microfluidic Solvent Extraction of Metal lons from Industrial Grade Leach Solutions: Extraction Performance and Channel Aging. Journal of Flow Chemistry, 2013, 3, 76-80.	1.9	14
20	Free running droplets on packed powder beds. , 2013, , .		2
21	Electrowetting of Ionic Liquids on Teflon AF1600 in Ambient Hexadecane. Journal of Adhesion Science and Technology, 2012, 26, 2047-2067.	2.6	9
22	pH-tunable gradients of wettability and surface potential. Soft Matter, 2012, 8, 8399.	2.7	57
23	Femtoliter Droplet Handling in Nanofluidic Channels: A Laplace Nanovalve. Analytical Chemistry, 2012, 84, 10812-10816.	6.5	46
24	Nanoroughness Impact on Liquid–Liquid Displacement. Journal of Physical Chemistry C, 2012, 116, 10934-10943.	3.1	19
25	Spontaneous liquid marble formation on packed porous beds. Soft Matter, 2012, 8, 11336.	2.7	25
26	Microfluidic Solvent Extraction of Metal Ions and Complexes from Leach Solutions Containing Nanoparticles. Chemical Engineering and Technology, 2012, 35, 1312-1319.	1.5	48
27	Structure-induced spreading of liquid in micropillar arrays. Microsystem Technologies, 2012, 18, 167-173.	2.0	9
28	Contact Line Friction in Liquid–Liquid Displacement on Hydrophobic Surfaces. Journal of Physical Chemistry C, 2011, 115, 24975-24986.	3.1	44
29	Electrostatics and Metal Oxide Wettability. Journal of Physical Chemistry C, 2011, 115, 14914-14921.	3.1	26
30	Dynamic wetting of a fluoropolymer surface by ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 3952.	2.8	44
31	Surface tension, interfacial tension and contact angles of ionic liquids. Current Opinion in Colloid and Interface Science, 2011, 16, 310-316.	7.4	72
32	Electrowetting: Electrocapillarity, saturation, and dynamics. European Physical Journal: Special Topics, 2011, 197, 307-319.	2.6	27
33	Microfluidic extraction of copper from particle-laden solutions. International Journal of Mineral Processing, 2011, 98, 168-173.	2.6	55
34	Photosensitized dimerization in pyrimidine-based thin solid films. Thin Solid Films, 2011, 519, 6010-6014.	1.8	0
35	Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State. Langmuir, 2010, 26, 860-865.	3.5	127
36	Electrowetting of Aqueous Solutions of Ionic Liquid in Solidâ^'Liquidâ^'Liquid Systems. Journal of Physical Chemistry C, 2010, 114, 8383-8388.	3.1	48

#	Article	IF	CITATIONS
37	Influence of Surface Charge on Wetting Kinetics. Langmuir, 2010, 26, 17218-17224.	3.5	47
38	Differential capacitance of the double layer at the electrode/ionic liquids interface. Physical Chemistry Chemical Physics, 2010, 12, 12499.	2.8	284
39	The unusual surface chemistry of Î \pm -Al2O3 (0001). Physical Chemistry Chemical Physics, 2010, 12, 13724.	2.8	52
40	Static and Dynamic Electrowetting of an Ionic Liquid in a Solid/Liquid/Liquid System. Journal of the American Chemical Society, 2010, 132, 8301-8308.	13.7	84
41	Orientation and mutual location of ions at the surface of ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 13816.	2.8	86
42	Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 2009, 331, 251-262.	9.4	351
43	The uniform capillary model for packed beds and particle wettability. Journal of Colloid and Interface Science, 2009, 337, 162-169.	9.4	19
44	Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces. Langmuir, 2009, 25, 5655-5660.	3.5	69
45	Double-Scale Roughness and Superhydrophobicity on Metalized Toray Carbon Fiber Paper. Langmuir, 2009, 25, 4760-4766.	3.5	17
46	Design of Pyrimidine-Based Photoresponsive Surfaces and Light-Regulated Wettability. Langmuir, 2009, 25, 11486-11494.	3.5	3
47	Experimental investigations of the wettability of clays and shales. Journal of Geophysical Research, 2009, 114, .	3.3	125
48	Microfluidic Solvent Extraction of Copper for Mineral Processing. , 2009, , .		0
49	Inferring wettability of heterogeneous surfaces by ToF-SIMS. Journal of Colloid and Interface Science, 2008, 320, 563-568.	9.4	32
50	The terminal rise velocity of 10–100 μm diameter bubbles in water. Journal of Colloid and Interface Science, 2008, 322, 168-172.	9.4	144
51	Angle-resolved X-ray photoelectron spectroscopy of the surface of imidazolium ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 1330.	2.8	185
52	Dynamics of Wetting from an Experimental Point of View. Annual Review of Materials Research, 2008, 38, 23-43.	9.3	102
53	Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids:  Influence of Potential, Cation Size, and Temperature. Journal of Physical Chemistry C, 2008, 112, 7486-7495.	3.1	449
54	Influence of the Work of Adhesion on the Dynamic Wetting of Chemically Heterogeneous Surfaces. Langmuir, 2008, 24, 13007-13012.	3.5	40

#	Article	IF	CITATIONS
55	Capillary Rise with Velocity-Dependent Dynamic Contact Angle. Langmuir, 2008, 24, 12710-12716.	3.5	94
56	Light-Induced Aggregation of Colloidal Gold Nanoparticles Capped by Thymine Derivatives. Langmuir, 2008, 24, 4506-4511.	3.5	33
57	Asymmetric Wetting Hysteresis on Chemical Defects. Physical Review Letters, 2007, 99, 026103.	7.8	54
58	Synthesis and Surface Structure of Thymine-Functionalized, Self-Assembled Monolayer-Protected Gold Nanoparticles. Langmuir, 2007, 23, 9170-9177.	3.5	35
59	Colloid Stability of Thymine-Functionalized Gold Nanoparticles. Langmuir, 2007, 23, 12096-12103.	3.5	35
60	Fabrication of silica-on-titania and titania-on-silica nanoparticle assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 1-7.	4.7	6
61	Electrowetting of Ionic Liquids. Journal of the American Chemical Society, 2006, 128, 3098-3101.	13.7	138
62	The formation and stability of self-assembled monolayers of octadecylphosphonic acid on titania. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 291, 51-58.	4.7	44
63	Directed crystallisation of zinc oxide on patterned surfaces. Journal of Colloid and Interface Science, 2006, 303, 333-336.	9.4	17
64	The interfacial conformation of polypropylene glycols and their foam properties. Minerals Engineering, 2006, 19, 703-712.	4.3	11
65	The role of surfactant structure on foam behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 233-238.	4.7	47
66	Foaming of polypropylene glycols and glycol/MIBC mixtures. Minerals Engineering, 2005, 18, 179-188.	4.3	65
67	Marangoni effects in aqueous polypropylene glycol foams. Journal of Colloid and Interface Science, 2005, 286, 719-729.	9.4	38
68	Thermally- and Photoinduced Changes in the Water Wettability of Low-Surface-Area Silica and Titania. Langmuir, 2005, 21, 2400-2407.	3.5	118
69	Preparation of Silica-on-Titania Patterns with a Wettability Contrast. Langmuir, 2005, 21, 5790-5794.	3.5	24
70	Contact Angle Saturation in Electrowetting. Journal of Physical Chemistry B, 2005, 109, 6268-6275.	2.6	205
71	WETTABILITY AND SURFACE ENERGETICS OF ROUGH FLUOROPOLYMER SURFACES. Journal of Adhesion, 2004, 80, 497-520.	3.0	31
72	Contact angle measurements using the Wilhelmy balance for asymmetrically treated samples. Journal of Adhesion Science and Technology, 2004, 18, 29-37.	2.6	5

#	Article	IF	CITATIONS
73	The interfacial conformation of polypropylene glycols and foam behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 307-315.	4.7	23
74	Influence of the Electrical Double Layer in Electrowetting. Journal of Physical Chemistry B, 2003, 107, 1163-1169.	2.6	144
75	Wettability of Photoresponsive Titanium Dioxide Surfaces. Langmuir, 2003, 19, 3272-3275.	3.5	138
76	The structure of PEO–PPO–PEO triblock copolymers at the water/air interface. Physica B: Condensed Matter, 2002, 315, 267-272.	2.7	35
77	Limiting Area per Molecule of Nonionic Surfactants at the Water/Air Interface. Langmuir, 2001, 17, 562-564.	3.5	22
78	Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene)oxide triblock copolymers at the water/air interface and in foam films. Colloid and Polymer Science, 2000, 278, 119-123.	2.1	31
79	Surface force measurement in foam films from mixtures of protein and polymeric surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 141-144.	4.7	17
80	Thinning of microscopic foam films formed from a mixture of bovine serum albumin and Pluronic L62. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 179-184.	4.7	7
81	Formation of a stable, highly concentrated O/W emulsion modeled by means of foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 23-28.	4.7	19
82	PEO-brush at the liquid/gas interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 65-70.	4.7	16
83	DLVO and non-DLVO surface forces in foam films from amphiphilic block copolymers. Advances in Colloid and Interface Science, 1999, 83, 111-136.	14.7	92
84	FOAMABILITY OF PEO-PPO-PEO TRIBLOCK COPOLYMERS (P85 AND F108) AND ROLE OF THE FOAM FILMS. Journal of Dispersion Science and Technology, 1999, 20, 1759-1776.	2.4	7
85	On the origin of electrostatic interaction in foam films from ABA triblock copolymers. , 1998, , 29-34.		10
86	Rheological Behaviour and Drainage of Microscopic Foam Films from Infasurf. , 1998, , 55-56.		0
87	SURFACE FORCES IN FOAM FILMS FROM AN ABA TRIBLOCK COPOLYME. Journal of Dispersion Science and Technology, 1997, 18, 751-767.	2.4	29
88	Transition from electrostatic to steric stabilization in foam films from ABA triblock copolymers of poly(ethylene oxide) and poly(propylene oxide). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124, 277-282.	4.7	34
89	Surface forces in foam films from ABA block copolymer: a dynamic method study. Colloid and Polymer Science, 1995, 273, 906-911.	2.1	21
90	Relaxation behaviour of human albumin adsorbed at the solution/air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 179-185.	4.7	68

#	Article	IF	CITATIONS
91	Relaxation of adsorption layers at solution/air interfaces using axisymmetric drop-shape analysis. Colloids and Surfaces, 1993, 69, 209-216.	0.9	71
92	Influence of geometry on steady dewetting kinetics. Colloids and Surfaces, 1992, 62, 141-151.	0.9	13