Meera V. Sundaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcytosis in the development and morphogenesis of epithelial tissues. EMBO Journal, 2021, 40, e106163.	7.8	15
2	Intermediate filaments: New insights are bublin up. Current Biology, 2021, 31, R719-R721.	3.9	0
3	The <i>Caenorhabditis elegans</i> Patched domain protein PTR-4Âis required for proper organization of the precuticular apical extracellular matrix. Genetics, 2021, 219, .	2.9	7
4	C. elegans Apical Extracellular Matrices Shape Epithelia. Journal of Developmental Biology, 2020, 8, 23.	1.7	31
5	A C. elegans Zona Pellucida domain protein functions via its ZPc domain. PLoS Genetics, 2020, 16, e1009188.	3.5	8
6	A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. ELife, 2020, 9, .	6.0	37
7	Epidermal Remodeling in <i>Caenorhabditis elegans</i> Dauers Requires the Nidogen Domain Protein DEX-1. Genetics, 2019, 211, 169-183.	2.9	12
8	Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 185-200.	2.9	25
9	The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation. Nature Communications, 2018, 9, 1741.	12.8	17
10	Time to make the doughnuts: Building and shaping seamless tubes. Seminars in Cell and Developmental Biology, 2017, 67, 123-131.	5.0	36
11	The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in Caenorhabditis elegans. Genetics, 2017, 205, 1247-1260.	2.9	19
12	Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in <i>Caenorhabditis elegans</i> . Genetics, 2017, 207, 625-642.	2.9	38
13	The <i>Caenorhabditis elegans</i> Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics, 2016, 203, 35-63.	2.9	64
14	Auto-fusion and the shaping of neurons and tubes. Seminars in Cell and Developmental Biology, 2016, 60, 136-145.	5.0	13
15	Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. PLoS Genetics, 2016, 12, e1006205.	3.5	44
16	A non-cell-autonomous role for Ras signaling in <i>C. elegans</i> neuroblast delamination. Development (Cambridge), 2014, 141, 4279-4284.	2.5	12
17	Canonical RTK-Ras-ERK signaling and related alternative pathways. WormBook, 2013, , 1-38.	5.3	77
18	Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development (Cambridge), 2012, 139, 979-990.	2.5	58

Meera V. Sundaram

#	Article	IF	CITATIONS
19	The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system. Developmental Biology, 2012, 366, 298-307.	2.0	13
20	Notch and Ras promote sequential steps of excretory tube development in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 3545-3555.	2.5	48
21	EOR-2 Is an Obligate Binding Partner of the BTB–Zinc Finger Protein EOR-1 in <i>Caenorhabditis elegans</i> . Genetics, 2010, 184, 899-913.	2.9	17
22	Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Developmental Biology, 2009, 329, 201-211.	2.0	56
23	Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 2008, 451, 569-572.	27.8	441
24	Strongyloides stercoralis: Cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3′ UTR. Experimental Parasitology, 2008, 118, 253-265.	1.2	55
25	TheCaenorhabditis elegans ekl(Enhancer ofksr-1Lethality) Genes Include Putative Components of a Germline Small RNA Pathway. Genetics, 2008, 178, 1431-1443.	2.9	40
26	Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. International Journal for Parasitology, 2006, 36, 671-679.	3.1	62
27	A Novel Gain-of-Function Mutant of the Cyclic GMP-Dependent Protein Kinase egl-4 Affects Multiple Physiological Processes in Caenorhabditis elegans. Genetics, 2006, 173, 177-187.	2.9	63
28	RTK/Ras/MAPK signaling. WormBook, 2006, , 1-19.	5.3	138
29	The love–hate relationship between Ras and Notch. Genes and Development, 2005, 19, 1825-1839.	5.9	163
30	Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11757-11762.	7.1	23
31	CeHMT-1, a Putative Phytochelatin Transporter, Is Required for Cadmium Tolerance in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 23684-23690.	3.4	82
32	C. elegansSUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites. Development (Cambridge), 2004, 131, 755-765.	2.5	45
33	Caenorhabditis elegans lin-35/Rb, efl-1/E2F and Other Synthetic Multivulva Genes Negatively Regulate the Anaphase-Promoting Complex Gene mat-3/APC8. Genetics, 2004, 167, 663-672.	2.9	17
34	Vulval Development: The Battle between Ras and Notch. Current Biology, 2004, 14, R311-R313.	3.9	28
35	The nT1 translocation separates vulval regulatory elements from the egl-18 and elt-6 GATA factor genes. Developmental Biology, 2004, 267, 252-263.	2.0	10
36	C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. Genes and Development, 2002, 16, 1815-1827.	5.9	77

Meera V. Sundaram

#	Article	IF	CITATIONS
37	ced-10 Rac and mig-2 Function Redundantly and Act with unc-73 Trio to Control the Orientation of Vulval Cell Divisions and Migrations in Caenorhabditis elegans. Developmental Biology, 2002, 241, 339-348.	2.0	51
38	C. elegans ksr-1 and ksr-2 Have Both Unique and Redundant Functions and Are Required for MPK-1 ERK Phosphorylation. Current Biology, 2002, 12, 427-433.	3.9	116
39	A <i>lin-45 raf</i> Enhancer Screen Identifies <i>eor-1</i> , <i>eor-2</i> and Unusual Alleles of Ras Pathway Genes in <i>Caenorhabditis elegans</i> . Genetics, 2002, 161, 121-131.	2.9	47
40	Mosaic Analysis in Caenorhabditis elegans. , 2000, 135, 447-462.		11
41	Kinase Suppressor of Ras Forms a Multiprotein Signaling Complex and Modulates MEK Localization. Molecular and Cellular Biology, 1999, 19, 5523-5534.	2.3	201
42	Control and integration of cell signaling pathways duringC. Elegans vulval development. BioEssays, 1996, 18, 473-480.	2.5	70
43	RAS-Mediated Signal Transduction in C. elegans. , 1996, , 47-73.		1
44	The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction. Cell, 1995, 83, 889-901.	28.9	295