Franz Kreupl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/380343/publications.pdf

Version: 2024-02-01

48 papers

2,974 citations

257450 24 h-index 34 g-index

49 all docs 49 docs citations

49 times ranked 2903 citing authors

#	Article	IF	Citations
1	A Cost-Effective, Impediometric Na ⁺ -Sensor in Fluids., 2021, 5, 1-4.		5
2	Simulation of the Transient Potential Distribution On-Chip During a Fast ESD Event Based on a Parametric Measurement Analysis. , 2020, , .		0
3	A CMOS Temperature Stabilized 2-D Mechanical Stress Sensor With 11-bit Resolution. IEEE Journal of Solid-State Circuits, 2020, 55, 846-855.	5.4	5
4	A CMOS Temperature Stabilized 2-Dimensional Mechanical Stress Sensor with 11-bit Resolution. , 2019, , .		2
5	Energy of CDM Failure for ICs on Package-, Wafer-and Board-Level. , 2019, , .		7
6	Carbon-nanotube computer scaled up. Nature, 2019, 572, 588-589.	27.8	6
7	Highly Reliable Contacts to Silicon Enabled by Low Temperature Sputtered Graphenic Carbon. IEEE Journal of the Electron Devices Society, 2019, 7, 252-260.	2.1	0
8	Overview of Carbon Nanotube Processing Methods. , 2017, , 81-100.		0
9	Hydrogen evolution activity of individual mono-, bi-, and few-layer MoS 2 towards photocatalysis. Applied Materials Today, 2017, 8, 132-140.	4.3	32
10	Graphenic carbon-silicon contacts for reliability improvement of metal-silicon junctions., 2016,,.		5
11	Performance Improvement of Graphenic Carbon X-ray Transmission Windows. MRS Advances, 2016, 1, 1441-1446.	0.9	7
12	Design and properties of low-energy X-ray transmission windows based on graphenic carbon. Physica Status Solidi (B): Basic Research, 2015, 252, 2564-2573.	1.5	15
13	High Performance X-Ray Transmission Windows Based on Graphenic Carbon. IEEE Transactions on Nuclear Science, 2015, 62, 588-593.	2.0	27
14	Advancing CMOS with carbon electronics. , 2014, , .		1
15	Reconfigurable Nanowire Electronics-Enabling a Single CMOS Circuit Technology. IEEE Nanotechnology Magazine, 2014, 13, 1020-1028.	2.0	63
16	Advancing CMOS with carbon electronics. , 2014, , .		1
17	Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applicationsâ€"Part II: Characterization. IEEE Transactions on Electron Devices, 2013, 60, 2870-2876.	3.0	16
18	Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Development. IEEE Transactions on Electron Devices, 2013, 60, 2862-2869.	3.0	25

#	Article	lF	Citations
19	The carbon-nanotube computer has arrived. Nature, 2013, 501, 495-496.	27.8	18
20	ã,«ãf¼ãfœãf³ãfŠāfŽāf ã f¥ãf¼ãf–ã§ã,³ãf³ãf"ãf¥ãf¼ã,¿ãf¼ã,'試作. Nature Digest, 2013, 10, 30-31.	0.0	0
21	Reconfigurable Silicon Nanowire Transistors. Nano Letters, 2012, 12, 119-124.	9.1	343
22	Carbon nanotubes finally deliver. Nature, 2012, 484, 321-322.	27.8	32
23	Carbon-based Materials as Key-enabler for "More Than Moore― Materials Research Society Symposia Proceedings, 2011, 1303, 57.	0.1	13
24	On the Applicability of Single-Walled Carbon Nanotubes as VLSI Interconnects. IEEE Nanotechnology Magazine, 2009, 8, 542-559.	2.0	156
25	Session 7: Solid-state and nanoelectronic devices - spin devices, batteries and steep slope FETs. , 2008, , .		0
26	Carbon-based resistive memory. , 2008, , .		26
27	Tuning the Polarity of Si-Nanowire Transistors Without the Use of Doping. , 2008, , .		13
28	Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Physica Status Solidi (B): Basic Research, 2007, 244, 4170-4175.	1.5	34
29	Silicon-Nanowire Transistors with Intruded Nickel-Silicide Contacts. Nano Letters, 2006, 6, 2660-2666.	9.1	231
30	Silicon nanowires: catalytic growth and electrical characterization. Physica Status Solidi (B): Basic Research, 2006, 243, 3340-3345.	1.5	26
31	Nanoelectronics beyond silicon. Microelectronic Engineering, 2006, 83, 619-623.	2.4	18
32	How do carbon nanotubes fit into the semiconductor roadmap?. Applied Physics A: Materials Science and Processing, 2005, 80, 1141-1151.	2.3	172
33	Carbon Nanotubes for Microelectronics?. Small, 2005, 1, 382-390.	10.0	90
34	Sub-20 nm Short Channel Carbon Nanotube Transistors. Nano Letters, 2005, 5, 147-150.	9.1	128
35	Catalytic CVD of SWCNTs at Low Temperatures and SWCNT Devices. AIP Conference Proceedings, 2004, ,	0.4	O
36	Ways towards the scaleable integration of carbon nanotubes into silicon based technology. Diamond and Related Materials, 2004, 13, 354-361.	3.9	65

#	Article	IF	CITATION
37	High-Current Nanotube Transistors. Nano Letters, 2004, 4, 831-834.	9.1	143
38	Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 \hat{A}° C and a Simple Growth Model. Journal of Physical Chemistry B, 2004, 108, 1888-1893.	2.6	157
39	Towards the integration of carbon nanotubes in microelectronics. Diamond and Related Materials, 2004, 13, 1296-1300.	3.9	91
40	Carbon Nanotubes: Can they become a microelectronics technology?. AIP Conference Proceedings, 2004, , .	0.4	1
41	Carbon nanotubes for microelectronics: status and future prospects. Materials Science and Engineering C, 2003, 23, 663-669.	7.3	80
42	Growth of Isolated Carbon Nanotubes with Lithographically Defined Diameter and Location. Nano Letters, 2003, 3, 257-259.	9.1	75
43	In-Situ Contacted Single-Walled Carbon Nanotubes and Contact Improvement by Electroless Deposition. Nano Letters, 2003, 3, 965-968.	9.1	60
44	Large-scale integration of carbon nanotubes into silicon-based microelectronics. , 2003, , .		2
45	Carbon nanotubes in interconnect applications. Microelectronic Engineering, 2002, 64, 399-408.	2.4	566
46	Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Current Applied Physics, 2002, 2, 107-111.	2.4	123
47	The origin of the integral barrier height in inhomogeneous Au/Co/GaAs67P33-Schottky contacts: A ballistic electron emission microscopy study. Journal of Applied Physics, 1998, 83, 358-365.	2.5	44
48	Potential pinch-off effect in inhomogeneous Au/Co/GaAs67P33(100)-Schottky contacts. Applied Physics Letters, 1997, 70, 2559-2561.	3. 3	37