Yoshinori Aso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3803019/publications.pdf

Version: 2024-02-01

159585 345221 7,930 36 30 36 citations h-index g-index papers 60 60 60 4393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transsynaptic mapping of Drosophila mushroom body output neurons. ELife, 2021, 10, .	6.0	29
2	BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. Nature Methods, 2020, 17, 1254-1261.	19.0	27
3	Toward nanoscale localization of memory engrams in <i>Drosophila</i> . Journal of Neurogenetics, 2020, 34, 151-155.	1.4	12
4	Conservation and divergence of related neuronal lineages in the Drosophila central brain. ELife, 2020, 9, .	6.0	29
5	Cell types and neuronal circuitry underlying female aggression in Drosophila. ELife, 2020, 9, .	6.0	62
6	The connectome of the adult Drosophila mushroom body provides insights into function. ELife, 2020, 9, .	6.0	231
7	Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science, 2019, 363, .	12.6	277
8	Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. ELife, 2019, 8, .	6.0	124
9	Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. ELife, 2019, 8, .	6.0	91
10	Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nature Communications, 2018, 9, 1104.	12.8	113
11	Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila. Neuron, 2018, 100, 651-668.e8.	8.1	80
12	Reinforcement signaling of punishment versus relief in fruit flies. Learning and Memory, 2018, 25, 247-257.	1.3	33
13	Representations of Novelty and Familiarity in a Mushroom Body Compartment. Cell, 2017, 169, 956-969.e17.	28.9	113
14	Localization, Diversity, and Behavioral Expression of Associative Engrams in Drosophila â~†., 2017, , 463-473.		7
15	A connectome of a learning and memory center in the adult Drosophila brain. ELife, 2017, 6, .	6.0	308
16	Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. ELife, 2016, 5, .	6.0	119
17	Dopaminergic neurons write and update memories with cell-type-specific rules. ELife, 2016, 5, .	6.0	235
18	Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body. Frontiers in Neural Circuits, 2015, 9, 73.	2.8	77

#	Article	IF	CITATIONS
19	Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 578-583.	7.1	205
20	A Dopamine-Modulated Neural Circuit Regulating Aversive Taste Memory in Drosophila. Current Biology, 2015, 25, 1535-1541.	3.9	82
21	Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila. Neuron, 2015, 88, 985-998.	8.1	294
22	Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature, 2015, 526, 258-262.	27.8	142
23	Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body. Current Biology, 2015, 25, 2915-2927.	3.9	133
24	A Higher Brain Circuit for Immediate Integration of Conflicting Sensory Information in Drosophila. Current Biology, 2015, 25, 2203-2214.	3.9	142
25	Reward signal in a recurrent circuit drives appetitive long-term memory formation. ELife, 2015, 4, e10719.	6.0	127
26	Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. ELife, 2014, 3, e02395.	6.0	158
27	The neuronal architecture of the mushroom body provides a logic for associative learning. ELife, 2014, 3, e04577.	6.0	833
28	Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. ELife, 2014, 3, e04580.	6.0	576
29	Essential Role of the Mushroom Body in Context-Dependent CO2 Avoidance in Drosophila. Current Biology, 2013, 23, 1228-1234.	3.9	102
30	Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability. PLoS Genetics, 2012, 8, e1002768.	3.5	239
31	Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience, 2012, 15, 592-599.	14.8	137
32	A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Reports, 2012, 2, 991-1001.	6.4	1,287
33	A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 2012, 488, 512-516.	27.8	520
34	Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neuroscience, 2011, 14, 903-910.	14.8	244
35	Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory. Current Biology, 2010, 20, 1445-1451.	3.9	273
36	The Mushroom Body of Adult <i>Drosophila</i> Characterized by GAL4 Drivers. Journal of Neurogenetics, 2009, 23, 156-172.	1.4	322