Shi-Kai Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802826/publications.pdf

Version: 2024-02-01

74163 57758 6,023 98 44 75 citations h-index g-index papers 126 126 126 4240 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper-catalyzed C-3 benzylation of quinoxalin- $2(1 < i > H < i >)$ -ones with benzylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2022, 20, 4518-4521.	2.8	3
2	Aromatic Azaâ€Claisen Rearrangement of Arylpropargylammonium Salts Generated in situ from Arynes and Tertiary Propargylamines. Chemistry - A European Journal, 2021, 27, 3091-3097.	3.3	12
3	Aryne-mediated [2,3]-sigmatropic rearrangement of tertiary 2,3-allenylamines bearing an electron-withdrawing group at the \hat{l} ±-position. Organic and Biomolecular Chemistry, 2021, 19, 5353-5357.	2.8	2
4	Strain-release C–C bond cleavage enables the [2,3]-sigmatropic rearrangement of tertiary allylamines. Chemical Communications, 2021, 57, 8449-8451.	4.1	3
5	Asymmetric Aza-Claisen Rearrangement between Enantioenriched α-Chiral Allylamines and Allenones. Journal of Organic Chemistry, 2021, 86, 3065-3073.	3.2	7
6	Highly Regioselective Aromatic C–H Allylation of <i>N</i> -(Arylmethyl)sulfonimides with Allyl Grignard Reagents Involving Benzylic C–N Cleavage. Organic Letters, 2021, 23, 6877-6881.	4.6	5
7	Palladium-Catalyzed Highly Regioselective Aromatic Substitution of Benzylic Ammonium Salts with Amines. Organic Letters, 2019, 21, 7169-7173.	4.6	19
8	Carbon Tetrachloride-Mediated Cyclization of (2-Alkynyl)arylaldimines for the Synthesis of Polychlorinated Nitrogen Heterocycles. Organic Letters, 2019, 21, 5675-5678.	4.6	8
9	Chiral α-Amino Acid/Palladium-Catalyzed Asymmetric Allylation of α-Branched β-Ketoesters with Allylic Amines: Highly Enantioselective Construction of All-Carbon Quaternary Stereocenters. Journal of Organic Chemistry, 2019, 84, 14936-14942.	3.2	16
10	1,2-Aminohalogenation of arynes with amines and organohalides. Chemical Communications, 2019, 55, 11255-11258.	4.1	18
11	Epoxideâ€Mediated Stevens Rearrangements of αâ€Aminoâ€Acidâ€Derived Tertiary Allylic, Propargylic, and Benzylic Amines: Convenient Access to Polysubstituted Morpholinâ€2â€ones. Chemistry - A European Journal, 2019, 25, 5169-5172.	3.3	8
12	Facile construction of three-membered rings via benzyne-promoted Darzens-type reaction of tertiary amines. Tetrahedron, 2019, 75, 1632-1638.	1.9	8
13	Copperâ€Catalyzed Oxidative Carbamoylation of <i>N</i> â€Arylacrylamides with Hydrazinecarboxamides Leading to 2â€(Oxindolâ€3â€yl)acetamide s . Advanced Synthesis and Catalysis, 2018, 360, 1544-1548.	4.3	33
14	Benzyneâ€Promoted Curtiusâ€Type Rearrangement of Acyl Hydrazides in the Presence of Nucleophiles. Asian Journal of Organic Chemistry, 2018, 7, 119-122.	2.7	9
15	Nucleophilic addition of tertiary propargylic amines to arynes followed by a [2,3]-sigmatropic rearrangement. Chemical Communications, 2018, 54, 6036-6039.	4.1	26
16	Formal Insertion of Imines (or Nitrogen Heteroarenes) and Arynes into the C–Cl Bond of Carbon Tetrachloride. Organic Letters, 2018, 20, 4545-4548.	4.6	33
17	TfNHNHBoc as a SCF ₃ source for the sulfenylation of indoles. Chemical Communications, 2018, 54, 8980-8982.	4.1	20
18	Three-component carboarylation of unactivated imines with arynes and carbon nucleophiles. Chemical Communications, 2017, 53, 1708-1711.	4.1	32

#	Article	IF	CITATIONS
19	Improving the Catalytic Activity of Au ₂₅ Nanocluster by Peeling and Doping. Chinese Journal of Chemistry, 2017, 35, 567-571.	4.9	57
20	N-Hydroxy sulfonamides as new sulfenylating agents for the functionalization of aromatic compounds. Organic and Biomolecular Chemistry, 2017, 15, 5284-5288.	2.8	32
21	Stereospecific Nucleophilic Substitution of Enantioenriched Tertiary Benzylic Amines via in Situ Activation with Benzyne. Organic Letters, 2017, 19, 1554-1557.	4.6	50
22	Sulfonyl hydrazides as sulfonyl sources in organic synthesis. Tetrahedron Letters, 2017, 58, 487-504.	1.4	104
23	Activation and Substitution of 1-Ferrocenylalkylamines with Allenones: Application to Three-Component Synthesis of 4-(1-Ferrocenylalkyl)pyrazoles. Organic Letters, 2017, 19, 5852-5855.	4.6	13
24	Highly Regioselective Carbamoylation of Electron-Deficient Nitrogen Heteroarenes with Hydrazinecarboxamides. Organic Letters, 2017, 19, 4850-4853.	4.6	28
25	Quasiâ€Dualâ€Packedâ€Kerneled Au ₄₉ (2,4â€DMBT) ₂₇ Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap. Angewandte Chemie - International Edition, 2017, 56, 12644-12648.	13.8	66
26	Kinetic Resolution of Racemic Allylic Alcohols by Catalytic Asymmetric Substitution of the OH Group with Monosubstituted Hydrazines. Chemistry - A European Journal, 2016, 22, 13041-13045.	3.3	22
27	Palladiumâ€Catalyzed Stereospecific Allylation of Nitroacetates with Enantioenriched Primary Allylic Amines. Advanced Synthesis and Catalysis, 2016, 358, 1854-1858.	4.3	13
28	Byâ€Productâ€Catalyzed Redoxâ€Neutral Sulfenylation/Deiodination/Aromatization of Cyclic Alkenyl Iodides with Sulfonyl Hydrazides. Advanced Synthesis and Catalysis, 2016, 358, 3368-3372.	4.3	50
29	Aryne-Mediated [2,3]-Sigmatropic Rearrangement of Tertiary Allylic Amines. Organic Letters, 2016, 18, 4872-4875.	4.6	49
30	TfNHNHBoc as a Trifluoromethylating Agent for Vicinal Difunctionalization of Terminal Alkenes. Organic Letters, 2016, 18, 3850-3853.	4.6	65
31	Peeling the Core–Shell Au ₂₅ Nanocluster by Reverse Ligand-Exchange. Chemistry of Materials, 2016, 28, 1022-1025.	6.7	60
32	Copper atalyzed Sulfenylation of Boronic Acids with Sulfonyl Hydrazides. Advanced Synthesis and Catalysis, 2015, 357, 928-932.	4.3	74
33	Kinetic resolution of primary allylic amines via palladium-catalyzed asymmetric allylic alkylation of malononitriles. Organic and Biomolecular Chemistry, 2015, 13, 5367-5371.	2.8	28
34	Cyclization of N-Arylacrylamides via Radical Arylsulfenylation of Carbon–Carbon Double Bonds with Sulfonyl Hydrazides. Journal of Organic Chemistry, 2015, 80, 12697-12703.	3.2	54
35	Enantiospecific Allylic Alkylation of Substituted Hydrazines with Allylic Alcohols. Chinese Journal of Organic Chemistry, 2015, 35, 618.	1.3	9
36	Catalytic Allylation of Hypophosphorous Acid and <i>H</i> â€Phosphinic Acids with Primary Allylic Amines. Asian Journal of Organic Chemistry, 2014, 3, 711-714.	2.7	21

#	Article	IF	CITATIONS
37	Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Brønsted Acid. Angewandte Chemie - International Edition, 2014, 53, 3684-3687.	13.8	114
38	Palladium/Copperâ€Catalyzed Oxidative Arylation of Terminal Alkenes with Aroyl Hydrazides. Chemistry - A European Journal, 2014, 20, 2765-2769.	3.3	27
39	Direct enantiospecific substitution of primary α-aminoalkylferrocenes via Lewis acid-catalyzed C–N bond cleavage. Chemical Communications, 2014, 50, 14531-14534.	4.1	20
40	Palladium-catalyzed aerobic oxidative coupling of enantioenriched primary allylic amines with sulfonyl hydrazides leading to optically active allylic sulfones. Chemical Communications, 2014, 50, 3802.	4.1	99
41	Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids. Chemical Communications, 2014, 50, 219-221.	4.1	51
42	Catalytic stereospecific allylation of protected hydrazines with enantioenriched primary allylic amines. Organic Chemistry Frontiers, 2014, 1, 812.	4.5	26
43	Catalytic Stereospecific Substitution of Enantioenriched Allylic Alcohols with Sodium Sulfinates. Advanced Synthesis and Catalysis, 2014, 356, 2984-2988.	4.3	44
44	Deammoniative Condensation of Primary Allylic Amines with Nonallylic Amines. Chinese Journal of Chemistry, 2014, 32, 741-751.	4.9	18
45	lodine-catalyzed three-component oxysulfenylation of alkenes with sulfonyl hydrazides and alcohols. Chemical Communications, 2014, 50, 2111.	4.1	129
46	Catalytic stereospecific alkylation of malononitriles with enantioenriched primary allylic amines. Chemical Communications, 2013, 49, 8190.	4.1	33
47	Oxidative alkoxycarbonylation of terminal alkenes with carbazates. Chemical Communications, 2013, 49, 6528.	4.1	48
48	Chiral boron Lewis acid-catalyzed asymmetric synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. RSC Advances, 2013, 3, 18275.	3.6	20
49	Catalytic Allylation of Stabilized Phosphonium Ylides with Primary Allylic Amines. Journal of Organic Chemistry, 2013, 78, 11071-11075.	3.2	59
50	A Highly Enantioselective Catalytic Mannich Reaction of Indolenines with Ketones. Advanced Synthesis and Catalysis, 2013, 355, 1715-1718.	4.3	24
51	Decarboxylative Alkylation of $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in K$ eto Acids with Isochromans under Oxidative Conditions. Chinese Journal of Chemistry, 2013, 31, 37-39.	4.9	14
52	Iodine atalyzed Regioselective Sulfenylation of Indoles with Sulfonyl Hydrazides. Angewandte Chemie - International Edition, 2013, 52, 4929-4932.	13.8	374
53	Oxidative Olefination of Secondary AminesÂ-with Carbon Nucleophiles. European Journal of Organic Chemistry, 2013, 2013, 3648-3652.	2.4	38
54	BrÃ,nstedâ€Acidâ€Catalyzed Regio―and Stereoselective Alkenylation and [3+2] Annulation of <i>N</i> â€Benzylic Sulfonamides with Alkenes. Asian Journal of Organic Chemistry, 2013, 2, 290-293.	2.7	13

#	Article	IF	Citations
55	Palladium atalyzed Regioselective Halogenation of Aromatic Azo Compounds. Advanced Synthesis and Catalysis, 2013, 355, 337-340.	4.3	41
56	N-Alkylsulfonamides as Useful Carbon Electrophiles. Synlett, 2013, 24, 1170-1185.	1.8	14
57	Expedient Synthesis of Functionalized Triarylmethanols through Tandem Formation of Geminal Ci£¿C and Ci£¿O Bonds. Advanced Synthesis and Catalysis, 2012, 354, 3475-3479.	4.3	10
58	A Highly Diastereoselective Decarboxylative Mannich Reaction of \hat{l}^2 -Keto Acids with Optically Active $\langle i \rangle N \langle i \rangle$ -Sulfinyl \hat{l}_{\pm} -Imino Esters. Organic Letters, 2012, 14, 3092-3095.	4.6	67
59	A highly enantioselective catalytic Strecker reaction of cyclic (Z)-aldimines. Chemical Communications, 2012, 48, 4899.	4.1	44
60	Catalytic asymmetric cleavage of sp ³ C–N bonds for access to highly enantioenriched N-benzylic sulfonamides. Chemical Communications, 2012, 48, 898-900.	4.1	34
61	Direct Substitution of Primary Allylic Amines with Sulfinate Salts. Journal of the American Chemical Society, 2012, 134, 14694-14697.	13.7	170
62	Ferric chloride-catalyzed C–N bond cleavage for the cyclization of arylallenes leading to polysubstituted indenes. Chemical Communications, 2012, 48, 10913.	4.1	43
63	Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles. Topics in Current Chemistry, 2012, 327, 197-238.	4.0	44
64	Crossâ€Coupling of <i>N</i> â€Allylic Sulfonimides with Organozinc Reagents at Room Temperature. European Journal of Organic Chemistry, 2012, 2012, 4107-4109.	2.4	12
65	Catalytic Asymmetric Synthesis of Dihydroquinazolinones from Imines and 2â€Aminobenzamides. Advanced Synthesis and Catalysis, 2012, 354, 995-999.	4.3	48
66	Regioselective and Stereospecific Crossâ€Coupling of Primary Allylic Amines with Boronic Acids and Boronates through Palladiumâ€Catalyzed CN Bond Cleavage. Angewandte Chemie - International Edition, 2012, 51, 2968-2971.	13.8	141
67	Oxidative Mizoroki–Heckâ€√ype Reaction of Arylsulfonyl Hydrazides for a Highly Regio―and Stereoselective Synthesis of Polysubstituted Alkenes. Chemistry - A European Journal, 2012, 18, 1582-1585.	3.3	122
68	Stereoselective Olefination and Regiospecific Vicinal Difunctionalization of Imines with αâ€(Benzothiazolâ€⊋â€ylsulfonyl) Carbonyl Compounds. European Journal of Organic Chemistry, 2012, 2012, 1590-1596.	2.4	17
69	Tunable stereoselective alkene synthesis by treatment of activated imines with nonstabilized phosphonium ylides. Chemical Communications, 2011, 47, 2158.	4.1	53
70	Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon–nitrogen and carbon–carbon bonds. Chemical Communications, 2011, 47, 8343.	4.1	69
71	Catalytic Asymmetric α-Alkylation of Ketones and Aldehydes withN-Benzylic Sulfonamides through Carbon–Nitrogen Bond Cleavage. Journal of Organic Chemistry, 2011, 76, 8095-8099.	3.2	47
72	Catalytic Asymmetric Pictet–Spengler-Type Reaction for the Synthesis of Optically Active Indolo[3,4- <i>cd</i>][1]benzazepines. Organic Letters, 2011, 13, 5636-5639.	4.6	77

#	Article	IF	CITATIONS
73	Four-Component Reaction of N-Sulfonylimines, (Cyanomethylene) triphenylphosphorane, Nitromethane, and Formaldehyde for the Synthesis of 3-Substituted 2-Methylene-4-nitrobutanenitriles. Journal of Organic Chemistry, 2011, 76, 4163-4167.	3.2	18
74	Crossâ€Coupling of Grignard Reagents with Sulfonylâ€Activated <i>sp</i> ³ Carbonâ€Nitrogen Bonds. Advanced Synthesis and Catalysis, 2011, 353, 1980-1984.	4.3	47
75	Stereoselective Olefination of <i>N</i> â€Sulfonyl Imines with Stabilized Phosphonium Ylides for the Synthesis of Electronâ€Deficient Alkenes. European Journal of Organic Chemistry, 2011, 2011, 1084-1091.	2.4	62
76	Byproductâ€Catalyzed Fourâ€Component Reactions of Aldehydes with Hexamethyldisilazane, Chloroformates, and Nucleophiles in Acetonitrile Leading to Protected Primary Amines, βâ€Amino Esters, and βâ€Amino Ketones. Chemistry - A European Journal, 2010, 16, 718-723.	3.3	43
77	Catalytic Regioselective Synthesis of Structurally Diverse Indene Derivatives from <i>N</i> Sulfonamides and Disubstituted Alkynes. Organic Letters, 2010, 12, 3832-3835.	4.6	137
78	A Highly Tunable Stereoselective Olefination of Semistabilized Triphenylphosphonium Ylides with <i>N </i> -Sulfonyl Imines. Journal of the American Chemical Society, 2010, 132, 5018-5020.	13.7	161
79	Catalytic coupling of N-benzylic sulfonamides with silylated nucleophiles at room temperature. Chemical Communications, 2010, 46, 6180.	4.1	42
80	Selective Benzylic and Allylic Alkylation of Protic Nucleophiles with Sulfonamides through Double Lewis Acid Catalyzed Cleavage of sp ³ Carbon–Nitrogen Bonds. Chemistry - A European Journal, 2009, 15, 793-797.	3.3	93
81	Stereoselective Synthesis of Polysubstituted Alkenes through a Phosphineâ€Mediated Threeâ€Component System of Aldehydes, αâ€Halo Carbonyl Compounds, and Terminal Alkenes. Chemistry - A European Journal, 2009, 15, 4538-4542.	3.3	40
82	An Expeditious Entry to Benzylic and Allylic Sulfones through Byproduct-Catalyzed Reaction of Alcohols with Sulfinyl Chlorides. Journal of Organic Chemistry, 2009, 74, 9501-9504.	3.2	73
83	Catalyst-Free Alkylation of Sulfinic Acids with Sulfonamides via sp ³ Câ^'N Bond Cleavage at Room Temperature. Organic Letters, 2009, 11, 2543-2545.	4.6	102
84	Controllable stereoselective synthesis of trisubstituted alkenes by a catalytic three-component reaction of terminal alkynes, benzylic alcohols, and simple arenes. Organic and Biomolecular Chemistry, 2009, 7, 3219.	2.8	46
85	Dual-reagent organocatalysis with a phosphine and electron-deficient alkene: application to the Henry reaction. Tetrahedron Letters, 2008, 49, 6442-6444.	1.4	31
86	Threeâ€Component Synthesis of Amine Derivatives Using Benzylic and Allylic Alcohols as <i>N</i> à€Alkylating Agents in the Absence of External Catalysts and Additives. European Journal of Organic Chemistry, 2008, 2008, 3623-3626.	2.4	20
87	Catalytic selective bis-arylation of imines with anisole, phenol, thioanisole and analogues. Chemical Communications, 2008, , 1249.	4.1	74
88	FeSO4·7H2O-Catalyzed Four-Component Synthesis of Protected Homoallylic Amines. Journal of Organic Chemistry, 2007, 72, 5407-5410.	3.2	44
89	Iron atalyzed Four omponent Reaction for the Synthesis of Protected Primary Amines. European Journal of Organic Chemistry, 2007, 2007, 4646-4650.	2.4	30
90	Catalytic cyanosilylation of ketones with simple phosphonium salt. Tetrahedron Letters, 2007, 48, 6010-6013.	1.4	52

#	Article	lF	CITATIONS
91	Enantioselective cyanocarbonation of ketones with chiral base. Tetrahedron, 2006, 62, 11320-11330.	1.9	46
92	Asymmetric Organic Catalysis with Modified Cinchona Alkaloids. Accounts of Chemical Research, 2004, 37, 621-631.	15.6	582
93	Catalytic Asymmetric Cyanosilylation of Ketones with Chiral Lewis Base. Journal of the American Chemical Society, 2003, 125, 9900-9901.	13.7	209
94	A Highly Enantioselective Chiral Lewis Base-Catalyzed Asymmetric Cyanation of Ketones. Journal of the American Chemical Society, 2001, 123, 6195-6196.	13.7	250
95	Asymmetric Synthesis of α-Amino Acids via Cinchona Alkaloid-Catalyzed Kinetic Resolution of Urethane-Protected α-Amino Acid N-Carboxyanhydrides. Journal of the American Chemical Society, 2001, 123, 12696-12697.	13.7	72
96	A Facile Route to Bulladecin-Type Acetogenins - Total Synthesis of Asimilobinand Correction of the Configuration of Its Tetrahydrofuran Segment. European Journal of Organic Chemistry, 2000, 2000, 349-356.	2.4	29
97	Total synthesis of gigantetrocin A. Chirality, 2000, 12, 581-589.	2.6	14
98	A Highly Enantioselective Catalytic Desymmetrization of Cyclic Anhydrides with Modified Cinchona Alkaloids. Journal of the American Chemical Society, 2000, 122, 9542-9543.	13.7	177