Eric Röttinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802816/publications.pdf Version: 2024-02-01

FRIC RÃOTTINCER

#	Article	IF	CITATIONS
1	A panâ€metazoan concept for adult stem cells: the wobbling <scp>Penrose</scp> landscape. Biological Reviews, 2022, 97, 299-325.	10.4	25
2	Intrinsically High Capacity of Animal Cells From a Symbiotic Cnidarian to Deal With Pro-Oxidative Conditions. Frontiers in Physiology, 2022, 13, 819111.	2.8	3
3	Creating a User-Friendly and Open-Access Gene Expression Database for Comparing Embryonic Development and Regeneration in Nematostella vectensis. Methods in Molecular Biology, 2022, 2450, 649-662.	0.9	0
4	Horizontal acquisition of Symbiodiniaceae in the <i>Anemonia viridis</i> (Cnidaria, Anthozoa) species complex. Molecular Ecology, 2021, 30, 391-405.	3.9	0
5	Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells, 2021, 10, 2692.	4.1	15
6	Transcriptomic Analysis in the Sea Anemone Nematostella vectensis. Methods in Molecular Biology, 2021, 2219, 231-240.	0.9	4
7	Experimental Tools to Study Regeneration in the Sea Anemone Nematostella vectensis. Methods in Molecular Biology, 2021, 2219, 69-80.	0.9	8
8	Cnidarian Cell Cryopreservation: A Powerful Tool for Cultivation and Functional Assays. Cells, 2020, 9, 2541.	4.1	5
9	The Diversity of Muscles and Their Regenerative Potential across Animals. Cells, 2020, 9, 1925.	4.1	9
10	NvERTx: A gene expression database to compare embryogenesis and regeneration in the sea anemone <i>Nematostella vectensis</i> . Development (Cambridge), 2018, 145, .	2.5	47
11	A novel technique to combine and analyse spatial and temporal expression datasets: A case study with the sea anemone Nematostella vectensis to identify potential gene interactions. Developmental Biology, 2017, 428, 204-214.	2.0	5
12	A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Developmental Biology, 2017, 430, 346-361.	2.0	24
13	The rise of the starlet sea anemone <i>Nematostella vectensis</i> as a model system to investigate development and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 408-428.	5.9	121
14	MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biology, 2016, 14, 61.	3.8	51
15	Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Frontiers in Cell and Developmental Biology, 2016, 4, 157.	3.7	60
16	Domain analysis of the Nematostella vectensis SNAIL ortholog reveals unique nucleolar localization that depends on the zinc-finger domains. Scientific Reports, 2015, 5, 12147.	3.3	6
17	Analysis of a spatial gene expression database for sea anemone Nematostella vectensis during early development. BMC Systems Biology, 2015, 9, 63.	3.0	4
18	Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis. International Journal of Molecular Sciences, 2015, 16, 28449-28471.	4.1	62

Eric Röttinger

#	Article	IF	CITATIONS
19	Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biology Open, 2015, 4, 830-842.	1.2	33
20	Hemichordata. , 2015, , 59-89.		14
21	Autophagy : Moving Benchside Promises to Patient Bedsides. Current Cancer Drug Targets, 2015, 15, 684-702.	1.6	14
22	A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut. PLoS ONE, 2014, 9, e103341.	2.5	15
23	In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes. BMC Cell Biology, 2014, 15, 44.	3.0	20
24	Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nature Protocols, 2013, 8, 924-934.	12.0	73
25	Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo. PLoS Genetics, 2012, 8, e1003121.	3.5	59
26	A Framework for the Establishment of a Cnidarian Gene Regulatory Network for "Endomesoderm― Specification: The Inputs of ß-Catenin/TCF Signaling. PLoS Genetics, 2012, 8, e1003164.	3.5	116
27	Evolutionary crossroads in developmental biology: hemichordates. Development (Cambridge), 2012, 139, 2463-2475.	2.5	59
28	A comparative gene expression database for invertebrates. EvoDevo, 2011, 2, 17.	3.2	21
29	Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm. PLoS Genetics, 2010, 6, e1001259.	3.5	133
30	Centralization of the Deuterostome Nervous System Predates Chordates. Current Biology, 2009, 19, 1264-1269.	3.9	110
31	FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development (Cambridge), 2008, 135, 353-365.	2.5	133
32	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
33	Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expression Patterns, 2006, 6, 864-872.	0.8	10
34	RTK and TGF-Î ² signaling pathways genes in the sea urchin genome. Developmental Biology, 2006, 300, 132-152.	2.0	140
35	Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development (Cambridge), 2006, 133, 4341-4353.	2.5	52
36	Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side. Developmental Cell, 2005, 9, 147-158.	7.0	242

#	Article	IF	CITATIONS
37	A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development (Cambridge), 2004, 131, 1075-1087.	2.5	110
38	Nodal and BMP2/4 Signaling Organizes the Oral-Aboral Axis of the Sea Urchin Embryo. Developmental Cell, 2004, 6, 397-410.	7.0	331