Christine J Didonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802477/publications.pdf Version: 2024-02-01

	279798	414414
1,819	23	32
citations	h-index	g-index
22	22	1410
32	32	1412
docs citations	times ranked	citing authors
	citations 32	1,81923citationsh-index3232

#	Article	IF	CITATIONS
1	Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn mouse model of spinal muscular atrophy. Experimental Neurology, 2021, 337, 113587.	4.1	7
2	Dysphagia Phenotypes in Spinal Muscular Atrophy: The Past, Present, and Promise for the Future. American Journal of Speech-Language Pathology, 2021, 30, 1008-1022.	1.8	18
3	Combination molecular therapies for type 1 spinal muscular atrophy. Muscle and Nerve, 2020, 62, 550-554.	2.2	51
4	Friedreich's Ataxia: Clinical Presentation of a Compound Heterozygote Child with a Rare Nonsense Mutation and Comparison with Previously Published Cases. Case Reports in Neurological Medicine, 2018, 2018, 1-5.	0.4	2
5	In vitro and in vivo effects of 2,4 diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS: Context-specific modulation of SMN transcript levels. PLoS ONE, 2017, 12, e0185079.	2.5	16
6	Absence of <scp>UCHL</scp> 1 function leads to selective motor neuropathy. Annals of Clinical and Translational Neurology, 2016, 3, 331-345.	3.7	33
7	Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Medicinal Chemistry, 2015, 7, 1793-1808.	2.3	52
8	ECG in neonate mice with spinal muscular atrophy allows assessment of drug efficacy. Frontiers in Bioscience - Elite, 2015, 7, 122-133.	1.8	4
9	A Short Antisense Oligonucleotide Ameliorates Symptoms of Severe Mouse Models of Spinal Muscular Atrophy. Molecular Therapy - Nucleic Acids, 2014, 3, e174.	5.1	47
10	The DcpS inhibitor RG3039 improves survival, function and motor unit pathologies in two SMA mouse models. Human Molecular Genetics, 2013, 22, 4084-4101.	2.9	78
11	Motor Neuron Rescue in Spinal Muscular Atrophy Mice Demonstrates That Sensory-Motor Defects Are a Consequence, Not a Cause, of Motor Neuron Dysfunction. Journal of Neuroscience, 2012, 32, 3818-3829.	3.6	168
12	Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiology of Disease, 2011, 43, 142-151.	4.4	26
13	Development of electrocardiogram intervals during growth of FVB/N neonate mice. BMC Physiology, 2010, 10, 16.	3.6	25
14	Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Human Molecular Genetics, 2010, 19, 3906-3918.	2.9	160
15	Molecular and phenotypic reassessment of an infrequently used mouse model for spinal muscular atrophy. Biochemical and Biophysical Research Communications, 2010, 391, 517-522.	2.1	50
16	Mouse Survival Motor Neuron Alleles That Mimic SMN2 Splicing and Are Inducible Rescue Embryonic Lethality Early in Development but Not Late. PLoS ONE, 2010, 5, e15887.	2.5	71
17	Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Human Molecular Genetics, 2009, 18, 1310-1322.	2.9	102
18	Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Human Molecular Genetics, 2008, 17, 1063-1075.	2.9	199

CHRISTINE J DIDONATO

#	Article	IF	CITATIONS
19	SMN Transcript Stability: Could Modulation of Messenger RNA Degradation Provide a Novel Therapy for Spinal Muscular Atrophy?. Journal of Child Neurology, 2007, 22, 1013-1018.	1.4	24
20	Animal Models of Spinal Muscular Atrophy. Journal of Child Neurology, 2007, 22, 1004-1012.	1.4	51
21	Development of a Gene Therapy Strategy for the Restoration of Survival Motor Neuron Protein Expression: Implications for Spinal Muscular Atrophy Therapy. Human Gene Therapy, 2003, 14, 179-188.	2.7	32
22	SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2beta1. Human Molecular Genetics, 2002, 11, 577-587.	2.9	127
23	Regulation of murine survival motor neuron (Smn) protein levels by modifying Smn exon 7 splicing. Human Molecular Genetics, 2001, 10, 2727-2736.	2.9	53
24	Complete nucleotide sequence, genomic organization, and promoter analysis of the murine survival motor neuron gene (Smn). Mammalian Genome, 1999, 10, 638-641.	2.2	15
25	Cloning, Characterization, and Copy Number of the Murine Survival Motor Neuron Gene: Homolog of the Spinal Muscular Atrophy-Determining Gene. Genome Research, 1997, 7, 339-352.	5.5	117
26	The mouse neuronal apoptosis inhibitory protein gene maps to a conserved syntenic region of mouse chromosome 13. Mammalian Genome, 1997, 8, 222-222.	2.2	4
27	Genetic and physical mapping of the mouse host resistance locus Lgn1. Mammalian Genome, 1997, 8, 682-685.	2.2	21
28	A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nature Genetics, 1995, 9, 56-62.	21.4	83
29	Linkage mapping of the spinal muscular atrophy gene. Human Genetics, 1994, 93, 305-312.	3.8	43
30	A Multicopy Dinucleotide Marker That Maps Close to the Spinal Muscular Atrophy Gene. Genomics, 1994, 21, 394-402.	2.9	54
31	A YAC Contig of the Region Containing the Spinal Muscular Atrophy Gene (SMA): Identification of an Unstable Region. Genomics, 1994, 24, 351-356.	2.9	45