Masahiro Tohkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of anticancer agents on sexual function: An in vivo study based on the US FDA Adverse Event Reporting System. Andrology, 2022, 10, 166-178.	3.5	6
2	Points to Consider for Implementation of the ICH E17 Guideline: Learning from Past Multiregional Clinical Trials in Japan. Clinical Pharmacology and Therapeutics, 2021, 109, 1555-1563.	4.7	11
3	Development of template systems for ligand interactions of CYP3A5 and CYP3A7 and their distinctions from CYP3A4 template. Drug Metabolism and Pharmacokinetics, 2021, 38, 100357.	2.2	9
4	In Silico Approach to Predict Severe Cutaneous Adverse Reactions Using the Japanese Adverse Drug Event Report Database. Clinical and Translational Science, 2021, 14, 756-763.	3.1	3
5	BRAF/MEK inhibitor-associated nephrotoxicity in a real-world setting and human kidney cells. Anti-Cancer Drugs, 2021, 32, 1076-1083.	1.4	2
6	Development of quantitative model of a local lymph node assay for evaluating skin sensitization potency applying machine learning CatBoost. Regulatory Toxicology and Pharmacology, 2021, 125, 105019.	2.7	10
7	Efficacy Comparison for a Schizophrenia and a Dysuria Drug Among East Asian Populations: A Retrospective Analysis Using Multi-regional Clinical Trial Data. Therapeutic Innovation and Regulatory Science, 2021, 55, 523-538.	1.6	1
8	HLA genotyping in Japanese patients with multiple myeloma receiving bortezomib: An exploratory biomarker study of JCOG1105 (JCOG1105A1). Cancer Science, 2021, 112, 5011-5019.	3.9	3
9	Tumor lysis syndrome associated with bortezomib: A post-hoc analysis after signal detection using the US Food and Drug Administration Adverse Event Reporting System. Anti-Cancer Drugs, 2020, 31, 183-189.	1.4	7
10	Comparison of Efficacy of Dipeptidyl Peptidaseâ€4 Inhibitors and Sodiumâ€Glucose Coâ€Transporter 2 Inhibitors Between Japanese and Nonâ€Japanese Patients: A Metaâ€Analysis. Clinical and Translational Science, 2020, 13, 498-508.	3.1	3
11	Versatile applicability of a grid-based CYP3A4 Template to understand the interacting mechanisms with the small-size ligands; part 3 of CYP3A4 Template study. Drug Metabolism and Pharmacokinetics, 2020, 35, 253-265.	2.2	10
12	Expression, mutation, and methylation of cereblonâ€pathway genes at pre―and postâ€lenalidomide treatment in multiple myeloma. Cancer Science, 2020, 111, 1333-1343.	3.9	17
13	Clinical study designs and patient selection methods based on genomic biomarkers: Points-to-consider documents. Drug Metabolism and Pharmacokinetics, 2020, 35, 187-190.	2.2	0
14	Possible Causes of Failing to Meet Primary Endpoints: A Systematic Review of Randomized Controlled Phase 3 Clinical Trials in Patients With Non–Small Cell Lung Cancer. Therapeutic Innovation and Regulatory Science, 2019, 53, 324-331.	1.6	0
15	Solving the interactions of steroidal ligands with CYP3A4 using a grid-base template system. Drug Metabolism and Pharmacokinetics, 2019, 34, 351-364.	2.2	8
16	Serum lipidomics for exploring biomarkers of bortezomib therapy in patients with multiple myeloma. Cancer Science, 2019, 110, 3267-3274.	3.9	17
17	Comparison of the developmental/reproductive toxicity and hepatotoxicity of phthalate esters in rats using an open toxicity data source. Journal of Toxicological Sciences, 2019, 44, 245-255.	1.5	26
18	Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition. Drug Metabolism and Pharmacokinetics, 2019, 34, 113-125.	2.2	15

#	Article	IF	CITATIONS
19	Lipidomic Profiling of Plasma Samples in Patients with Newly Diagnosed Multiple Myeloma; A Biomarker Study for Predicting the Response and Toxicities of Melphalan, Prednisolone and Bortezomib (MPB) Regimen : An Ancillary Study of the JCOG1105 (JCOG1105A1). Blood, 2019, 134, 3156-3156.	1.4	1
20	Hepatitis B infection reported with cancer chemotherapy: analyzing the <scp>US FDA</scp> Adverse Event Reporting System. Cancer Medicine, 2018, 7, 2269-2279.	2.8	11
21	In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Toxicological Sciences, 2018, 162, 667-675.	3.1	22
22	Allopurinol suppresses expression of the regulatory Tâ€cell migration factors TARC/CCL17 and MDC/CCL22 in HaCaT keratinocytes via restriction of nuclear factorâ€₽B activation. Journal of Applied Toxicology, 2018, 38, 274-283.	2.8	11
23	Susceptibility to serious skin and subcutaneous tissue disorders and skin tissue distribution of sodium-dependent glucose co-transporter type 2 (SGLT2) inhibitors. International Journal of Medical Sciences, 2018, 15, 937-943.	2.5	21
24	Factors Affecting Drugâ€Development Strategies in Asian Global Clinical Trials for Drug Approval in Japan. Clinical and Translational Science, 2018, 11, 182-188.	3.1	10
25	Ethnic Difference in the Pharmacodynamicsâ€efficacy Relationship of Dipeptidyl Peptidaseâ€4 Inhibitors Between Japanese and nonâ€Japanese Patients: A Systematic Review. Clinical Pharmacology and Therapeutics, 2017, 102, 701-708.	4.7	22
26	Pharmacokinetics and Pharmacodynamics of Meloxicam in East Asian Populations: The Role of Ethnicity on Drug Response. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 823-832.	2.5	12
27	The Survey of the Compliance Situation to the Antihypertensive Therapy Guideline by Analyzing Japanese National Claims Data. Yakugaku Zasshi, 2017, 137, 893-901.	0.2	1
28	<i>In silico</i> Analysis of Interactions between HLA-B*58:01 and Allopurinol-related Compounds. Chem-Bio Informatics Journal, 2016, 16, 1-4.	0.3	6
29	Absence of ethnic differences in the pharmacokinetics of moxifloxacin, simvastatin, and meloxicam among three East <scp>Asian</scp> populations and Caucasians. British Journal of Clinical Pharmacology, 2016, 81, 1078-1090.	2.4	38
30	Identification of Circulating Serum microRNAs As Novel Biomarkers Predicting Disease Progression and Sensitivity to Bortezomib Treatment in Multiple Myeloma. Blood, 2016, 128, 4408-4408.	1.4	2
31	Cross-Classification of Human Urinary Lipidome by Sex, Age, and Body Mass Index. PLoS ONE, 2016, 11, e0168188.	2.5	13
32	The effectiveness of risk communication regarding drug safety information: a nationwide survey by the Japanese public health insurance claims data. Journal of Clinical Pharmacy and Therapeutics, 2015, 40, 273-278.	1.5	7
33	No Contribution of the ABCB11 p.444A Polymorphism in Japanese Patients with Drug-Induced Cholestasis. Drug Metabolism and Disposition, 2015, 43, 691-697.	3.3	12
34	A detection algorithm for drugâ€induced liver injury in medical information databases using the Japanese diagnostic scale and its comparison with the Council for International Organizations of Medical Sciences/the Roussel Uclaf Causality Assessment Method scale. Pharmacoepidemiology and Drug Safety. 2014, 23, 984-988.	1.9	29
35	The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A. Toxicology and Applied Pharmacology, 2013, 273, 90-99.	2.8	37
36	Specific HLA types are associated with antiepileptic drug-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese subjects. Pharmacogenomics, 2013, 14, 1821-1831.	1.3	60

#	Article	IF	CITATIONS
37	A whole-genome association study of major determinants for allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics Journal, 2013, 13, 60-69.	2.0	160
38	Significant Association between Hand-Foot Syndrome and Efficacy of Capecitabine in Patients with Metastatic Breast Cancer. Biological and Pharmaceutical Bulletin, 2012, 35, 717-724.	1.4	29
39	Functional analysis of genetic variations in the 5′-flanking region of the human MDR1 gene. Molecular Genetics and Metabolism, 2011, 102, 91-98.	1.1	14
40	<i>HLAâ€B*1511</i> is a risk factor for carbamazepineâ€induced Stevensâ€Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia, 2010, 51, 2461-2465.	5.1	217
41	<i>CYP3A4</i> * <i>16</i> and <i>CYP3A4</i> * <i>18</i> Alleles Found in East Asians Exhibit Differential Catalytic Activities for Seven CYP3A4 Substrate Drugs. Drug Metabolism and Disposition, 2010, 38, 2100-2104.	3.3	45
42	Substrate-Dependent Functional Alterations of Seven CYP2C9 Variants Found in Japanese Subjects. Drug Metabolism and Disposition, 2009, 37, 1895-1903.	3.3	55
43	Identification of the functional vitamin D response elements in the human MDR1 gene. Biochemical Pharmacology, 2008, 76, 531-542.	4.4	65
44	Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicology and Applied Pharmacology, 2008, 229, 10-19.	2.8	121
45	Thyroid hormone receptor mediates human MDR1 gene expression—Identification of the response region essential for gene expression. Archives of Biochemistry and Biophysics, 2008, 474, 82-90.	3.0	20
46	HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics, 2008, 9, 1617-1622.	1.3	368
47	Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Research and Clinical Practice, 2006, 72, 148-154.	2.8	74
48	Identification of regulatory sites in the human PXR (NR1I2) promoter region. Molecular and Cellular Biochemistry, 2006, 281, 35-43.	3.1	8
49	5′ Diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site. Molecular and Cellular Biochemistry, 2005, 273, 79-85.	3.1	15
50	RACIAL VARIABILITY IN HAPLOTYPE FREQUENCIES OF UGT1A1 AND GLUCURONIDATION ACTIVITY OF A NOVEL SINGLE NUCLEOTIDE POLYMORPHISM 686C> T (P229L) FOUND IN AN AFRICAN-AMERICAN. Drug Metabolism and Disposition, 2005, 33, 458-465.	3.3	149
51	Comprehensive UGT1A1 Genotyping in a Japanese Population by Pyrosequencing. Clinical Chemistry, 2003, 49, 1182-1185.	3.2	55
52	MutagenicityTesting of 1,3-Butadiene, 1,4-Pentadiene-3-ol, Isoprene, 2,4-Hexadiene, cis- and trans-Piperlylene Journal of Health Science, 2002, 48, 73-78.	0.9	9
53	Analysis of DNA Adducts after Exposure to 1,4-Dichlorobenzene by 32P-Postlabeling Technique Journal of Health Science, 2001, 47, 68-71.	0.9	3
54	Aryl Hydrocarbon Receptor Is Required for p300-Mediated Induction of DNA Synthesis by Adenovirus E1A. Molecular Pharmacology, 2000, 58, 845-851.	2.3	46

#	Article	IF	CITATIONS
55	Targeted Disruption of Soluble Epoxide Hydrolase Reveals a Role in Blood Pressure Regulation. Journal of Biological Chemistry, 2000, 275, 40504-40510.	3.4	309
56	Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell, 2000, 102, 731-744.	28.9	1,604
57	Cloning and Expression Analysis of a New Member of the Cytochrome P450, CYP2A15 from the Chinese Hamster, Encoding Testosterone 7α-Hydroxylase. Archives of Biochemistry and Biophysics, 1999, 371, 270-276.	3.0	6
58	A Novel Positive Regulatory Element That Enhances HamsterCYP2A8 Gene Expression Mediated by Xenobiotic Responsive Element. Molecular Pharmacology, 1999, 55, 279-287.	2.3	15
59	Cloning and Characterization of Syrian Hamster Testosterone 7α-Hydroxylase, CYP2A9. Archives of Biochemistry and Biophysics, 1998, 351, 60-65.	3.0	14
60	Evidence for Involvement of cAMP-Dependent Pathway in the Phenobarbital-Induced Expression of a Novel Hamster Cytochrome P450, CYP3A31. Archives of Biochemistry and Biophysics, 1998, 356, 100-106.	3.0	8
61	Comparative study of inhibitory effects by murine interferon ? and a new bisphosphonate (alendronate) in hypercalcemic, nude mice bearing human tumor (LJC-1-JCK). Cancer Immunology, Immunotherapy, 1994, 39, 155-160.	4.2	0
62	Proliferative effect of phospholipase A2 in rat chondrocyte via its specific binding sites. Biochemical and Biophysical Research Communications, 1992, 186, 1025-1031.	2.1	29
63	Recombinant human glucagon: Large-scale purification and biochemical characterization. The Protein Journal, 1992, 11, 517-525.	1.1	5
64	Interaction of guanine-nucleotide-binding regulatory proteins with chemotactic peptide receptors in differentiated human leukemic HL-60 cells. FEBS Journal, 1991, 195, 527-533.	0.2	15
65	Sex Difference in Adrenergic Receptor-Mediated Glycogenolysis in Rat Livers. The Japanese Journal of Pharmacology, 1990, 54, 365-374.	1.2	8
66	Possible interaction of alpha1-adrenergic receptor with pertussis-toxin-sensitive guanine-nucleotide-binding regulatory proteins (G proteins) responsible for phospholipase C activation in rat liver plasma membranes. FEBS Journal, 1990, 194, 81-87.	0.2	6
67	Mastoparan, a wasp venom, activates glycogenolysis mediated by the increase of cytosolic free Ca2+ concentration in rat hepatocytes. The Japanese Journal of Pharmacology, 1990, 52, 84.	1.2	0
68	Sex difference of hepatic β-adrenergic receptor-function in rats. The Japanese Journal of Pharmacology, 1990, 52, 267.	1.2	0
69	Mastoparan, a peptide toxin from wasp venom, stimulates glycogenolysis mediated by an increase of the cytosolic free Ca2+concentration but not by an increase of cAMP in rat hepatocytes. FEBS Letters, 1990, 260, 179-182.	2.8	23
70	Inhibition by islet-activating protein, pertussis toxin, of retinoic acid-induced differentiation of human leukemic (HL-60) cells. FEBS Letters, 1989, 255, 187-190.	2.8	9
71	GTP-binding proteins in human platelet membranes serving as the specific substrate of islet-activating protein, pertussis toxin. FEBS Letters, 1988, 237, 113-117.	2.8	36
72	Effects of Adrenergic Agonists and Antagonists on Glycogenolysis in Isolated Perfused Rat Liver. The Japanese Journal of Pharmacology, 1987, 45, 233-242.	1.2	1

#	Article	IF	CITATIONS
73	Comparison of epinephrine and respiratory chain uncoupler induced glycogenolysis in isolated perfused rat liver. The Japanese Journal of Pharmacology, 1987, 43, 65.	1.2	0
74	Antihepatotoxic Actions ofAllium sativumBulbs1. Planta Medica, 1986, 52, 163-168.	1.3	36
75	Chemical conversion of corticosteroids to 3.ALPHA.,5.ALPHAtetrahydro derivatives. Synthesis of allotetrahydro-11-deoxycortisol glucuronides Chemical and Pharmaceutical Bulletin, 1985, 33, 4281-4287.	1.3	12
76	Mechanism of Antihepatotoxic Activity of Atractylon, I: Effect on Free Radical Generation and Lipid Peroxidation1. Planta Medica, 1985, 51, 97-100.	1.3	35
77	Mechanism of Antihepatotoxic Activity of Wuweizisu C and Gomisin A. Planta Medica, 1985, 51, 331-334.	1.3	62
78	Mechanism of Antihepatotoxic Activity of Glycyrrhizin, I: Effect on Free Radical Generation and Lipid Peroxidation. Planta Medica, 1984, 50, 298-302.	1.3	230
79	Assay Method For Antihepatotoxic Activity Using Galactosamine-Induced Cytotoxicity in Primary-Cultured Hepatocytes. Journal of Natural Products, 1983, 46, 841-847.	3.0	50
80	Antihepatotoxic Principles of Atractylodes Rhizomes. Journal of Natural Products, 1983, 46, 651-654.	3.0	55