Minghang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3802271/publications.pdf

Version: 2024-02-01

361413 395702 2,499 34 20 33 citations h-index g-index papers 34 34 34 1766 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural wood templated hierarchically cellular NbC/Pyrolytic carbon foams as Stiff, lightweight and High-Performance electromagnetic shielding materials. Journal of Colloid and Interface Science, 2022, 606, 1543-1553.	9.4	19
2	Additive manufacturing of nanocellulose/polyborosilazane derived CNFs-SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption. Chemical Engineering Journal, 2022, 433, 133743.	12.7	30
3	Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibers/SiCN nanocomposites with excellent electromagnetic absorption performance. Carbon, 2022, 188, 349-359.	10.3	17
4	Ti ₃ C ₂ T <i>_x</i> /i>/MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	11.2	85
5	A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. Journal of Materials Science and Technology, 2022, 125, 29-37.	10.7	17
6	Low Infrared Emissivity and Strong Stealth of Ti-Based MXenes. Research, 2022, 2022, .	5.7	17
7	Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceramics International, 2021, 47, 13628-13634.	4.8	31
8	Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 946-956.	21.1	65
9	Protein-Derived Hybrid Carbon Nanospheres with Tunable Microwave Absorbing Performance in the X-Band. ACS Applied Electronic Materials, 2021, 3, 2685-2693.	4.3	14
10	A sheath-core shaped ZrO2-SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chemical Engineering Journal, 2021, 419, 129414.	12.7	82
11	Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon, 2021, 183, 322-331.	10.3	40
12	Synthesis of Si–C–N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band. Journal of Materials Chemistry C, 2021, 9, 16966-16977.	5.5	8
13	Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. Journal of Materials Science and Technology, 2020, 59, 164-172.	10.7	125
14	In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance. Composites Part B: Engineering, 2020, 202, 108408.	12.0	29
15	A lightweight CNWs-SiO2/3Al2O3·2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. Ceramics International, 2020, 46, 20395-20403.	4.8	16
16	A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 11774-11783.	2.2	8
17	Enhanced electromagnetic wave absorption properties of a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic. Ceramics International, 2020, 46, 22474-22481.	4.8	20
18	Electromagnetic interference shielding Ti3C2T -bonded carbon black films with enhanced absorption performance. Chinese Chemical Letters, 2020, 31, 1026-1029.	9.0	15

#	Article	IF	CITATIONS
19	Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band. Journal Physics D: Applied Physics, 2019, 52, 435102.	2.8	13
20	Lightweight Ti ₂ CT <i>_x</i> MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Applied Materials & Los Applied & Los Applied Materials & Los Applied & Los Applie	8.0	488
21	2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon, 2019, 146, 210-217.	10.3	161
22	Ultralight Cellular Foam from Cellulose Nanofiber/Carbon Nanotube Self-Assemblies for Ultrabroad-Band Microwave Absorption. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22628-22636.	8.0	99
23	Carbon nanowires reinforced porous SiO2/3Al2O3·2SiO2 ceramics with tunable electromagnetic absorption properties. Ceramics International, 2019, 45, 11316-11324.	4.8	9
24	Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon, 2019, 147, 276-283.	10.3	91
25	Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon, 2019, 148, 421-429.	10.3	100
26	Thermal stability and dielectric properties of 2D Ti ₂ C MXenes via annealing under a gas mixture of Ar and H ₂ atmosphere. Functional Composites and Structures, 2019, 1, 015002.	3.4	19
27	Interface evolution of a C/ZnO absorption agent annealed at elevated temperature for tunable electromagnetic properties. Journal of the American Ceramic Society, 2019, 102, 5305-5315.	3.8	28
28	Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5364-5372.	8.0	64
29	Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon, 2019, 142, 346-353.	10.3	253
30	Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon, 2018, 132, 343-351.	10.3	280
31	Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology, 2018, 29, 184003.	2.6	39
32	Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar Foams for Efficient Microwave Absorption in the X-Band. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34524-34533.	8.0	172
33	A novel SiC-based microwave absorption ceramic with Sc2Si2O7 as transparent matrix. Journal of the European Ceramic Society, 2018, 38, 4189-4197.	5.7	44
34	A frequency selective surface loaded two-layer composite for tunable microwave absorption. Materials Research Express, 0, , .	1.6	1