List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3801972/publications.pdf Version: 2024-02-01

Ηιροςμι Ειπιτλ

#	Article	IF	CITATIONS
1	Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule. American Journal of Roentgenology, 2000, 174, 71-74.	2.2	742
2	Classification of teeth in cone-beam CT using deep convolutional neural network. Computers in Biology and Medicine, 2017, 80, 24-29.	7.0	221
3	Automated detection of pulmonary nodules in PET/CT images: Ensemble falseâ€positive reduction using a convolutional neural network technique. Medical Physics, 2016, 43, 2821-2827.	3.0	190
4	Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks. BioMed Research International, 2017, 2017, 1-6.	1.9	160
5	A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiology, 2019, 48, 20180218.	2.7	150
6	AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 2020, 13, 6-19.	1.9	146
7	Deep learning of the sectional appearances of 3D <scp>CT</scp> images for anatomical structure segmentation based on an <scp>FCN</scp> voting method. Medical Physics, 2017, 44, 5221-5233.	3.0	137
8	Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiology, 2019, 35, 301-307.	1.9	133
9	Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiology, 2020, 36, 337-343.	1.9	130
10	Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2019, 128, 424-430.	0.4	109
11	Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2019, 127, 458-463.	0.4	108
12	Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Computer Methods and Programs in Biomedicine, 2008, 92, 238-248.	4.7	83
13	Breast mass classification on mammograms using radial local ternary patterns. Computers in Biology and Medicine, 2016, 72, 43-53.	7.0	67
14	Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 130, 464-469.	0.4	59
15	Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. BioMed Research International, 2019, 2019, 1-9.	1.9	54
16	Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 173-178.	2.8	51
17	Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiology, 2021, 37, 13-19.	1.9	51
18	Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT or MR imaging?. Computerized Medical Imaging and Graphics, 2015, 46, 227-236.	5.8	49

#	Article	IF	CITATIONS
19	Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks. PLoS ONE, 2020, 15, e0229951.	2.5	48
20	Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 130, 336-343.	0.4	41
21	Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images. Dentomaxillofacial Radiology, 2019, 48, 20190019.	2.7	40
22	Improving breast mass classification by shared data with domain transformation using a generative adversarial network. Computers in Biology and Medicine, 2020, 119, 103698.	7.0	40
23	Automated Detection and Segmentation of Early Gastric Cancer from Endoscopic Images Using Mask R-CNN. Applied Sciences (Switzerland), 2020, 10, 3842.	2.5	38
24	Automated Solder Inspection Technique for BGA-Mounted Substrates by Means of Oblique Computed Tomography. IEEE Transactions on Electronics Packaging Manufacturing, 2007, 30, 285-292.	1.4	37
25	Automated microaneurysm detection method based on double-ring filter and feature analysis in retinal fundus images. , 2012, , .		33
26	Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofacial Radiology, 2021, 50, 20200171.	2.7	32
27	Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs. Dentomaxillofacial Radiology, 2016, 45, 20150419.	2.7	30
28	Quantitative assessment of mandibular cortical erosion on dental panoramic radiographs for screening osteoporosis. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 2021-2032.	2.8	28
29	Usefulness of a deep learning system for diagnosing Sjögren's syndrome using ultrasonography images. Dentomaxillofacial Radiology, 2020, 49, 20190348.	2.7	28
30	Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiological Physics and Technology, 2017, 10, 279-285.	1.9	25
31	A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features. Radiological Physics and Technology, 2020, 13, 27-36.	1.9	25
32	Fully automatic segmentation of paraspinal muscles from 3D torso CT images via multi-scale iterative random forest classifications. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1697-1706.	2.8	23
33	Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 241-251.	2.8	23
34	Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dentomaxillofacial Radiology, 2021, 50, 20200611.	2.7	22
35	Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network. Computers in Biology and Medicine, 2020, 126, 104032.	7.0	17
36	Lung Cancer Segmentation With Transfer Learning: Usefulness of a Pretrained Model Constructed From an Artificial Dataset Generated Using a Generative Adversarial Network. Frontiers in Artificial Intelligence, 2021, 4, 694815.	3.4	16

Ηιroshi Fujita

#	Article	IF	CITATIONS
37	Magnetic resonance imaging of uterine fibroids: a preliminary investigation into the usefulness of 3D-rendered images for surgical planning. SpringerPlus, 2015, 4, 384.	1.2	15
38	Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy. Asia Oceania Journal of Nuclear Medicine and Biology, 2019, 7, 29-37.	0.1	15
39	Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes. Radiological Physics and Technology, 2020, 13, 160-169.	1.9	14
40	Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiological Physics and Technology, 2018, 11, 265-273.	1.9	13
41	Bone suppression for chest X-ray image using a convolutional neural filter. Physical and Engineering Sciences in Medicine, 2020, 43, 97-108.	2.4	13
42	Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning. Scientific Reports, 2021, 11, 20317.	3.3	13
43	K-means Clustering for Classifying Unlabelled MRI Data. , 2007, , .		12
44	Resolution properties of a 2048×2048 matrix image intensifier-TV based digital radiography system. Medical Physics, 1994, 21, 463-469.	3.0	11
45	An Automatic Detection Method for Carotid Artery Calcifications Using Top-Hat Filter on Dental Panoramic Radiographs. IEICE Transactions on Information and Systems, 2013, E96.D, 1878-1881.	0.7	10
46	Unsupervised 3D PET-CT Image Registration Method Using a Metabolic Constraint Function and a Multi-Domain Similarity Measure. IEEE Access, 2020, 8, 63077-63089.	4.2	10
47	Decision Support System for Lung Cancer Using PET/CT and Microscopic Images. Advances in Experimental Medicine and Biology, 2020, 1213, 73-94.	1.6	10
48	Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification. Proceedings of SPIE, 2017, , .	0.8	9
49	Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network. Proceedings of SPIE, 2017, , .	0.8	9
50	An Optimized Registration Method Based on Distribution Similarity and DVF Smoothness for 3D PET and CT Images. IEEE Access, 2020, 8, 1135-1145.	4.2	9
51	High Speed Oblique CT System for Solder Bump Inspection. , 2007, , .		7
52	Factors affecting observer agreement in morphological evaluation of mandibular cortical bone on panoramic radiographs. Oral Radiology, 2017, 33, 117-123.	1.9	7
53	Automated segmentation and detection of increased uptake regions in bone scintigraphy using SPECT/CT images. Annals of Nuclear Medicine, 2018, 32, 182-190.	2.2	6
54	A complementary scheme for automated detection of high-uptake regions on dedicated breast PET and whole-body PET/CT. Radiological Physics and Technology, 2019, 12, 260-267.	1.9	6

#	Article	IF	CITATIONS
55	Virtual digital subtraction angiography using multizone patch-based U-Net. Physical and Engineering Sciences in Medicine, 2020, 43, 1305-1315.	2.4	6
56	Automated assessment of breast tissue density in non-contrast 3D CT images without image segmentation based on a deep CNN. Proceedings of SPIE, 2017, , .	0.8	5
57	Surface Muscle Segmentation Using 3D U-Net Based on Selective Voxel Patch Generation in Whole-Body CT Images. Applied Sciences (Switzerland), 2020, 10, 4477.	2.5	5
58	Development of a Fully Automated Glioma-Grading Pipeline Using Post-Contrast T1-Weighted Images Combined with Cloud-Based 3D Convolutional Neural Network. Applied Sciences (Switzerland), 2021, 11, 5118.	2.5	5
59	Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study. , 2017, , .		5
60	Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers. Asian Pacific Journal of Cancer Prevention, 2022, 23, 1315-1324.	1.2	5
61	FUNDAMENTALS OF ROC ANALYSIS AND ITS RECENT PROGRESS. Japanese Journal of Radiological Technology, 1993, 49, 1685-1703.	0.1	4
62	Automated Detection of Micro Void in Solder Bump. IEEJ Transactions on Industry Applications, 2006, 126, 1514-1521.	0.2	4
63	Application of telemedicine to assess mandibular cortical width on panoramic images of dental patients in the Lao People's Democratic Republic. Oral Radiology, 2015, 31, 155-159.	1.9	4
64	Computer-aided assessment of hepatic contour abnormalities as an imaging biomarker for the prediction of hepatocellular carcinoma development in patients with chronic hepatitis C. European Journal of Radiology, 2015, 84, 811-815.	2.6	4
65	Non-rigid registration of multi-phase liver CT data using fully automated landmark detection and TPS deformation. Cluster Computing, 2019, 22, 15305-15319.	5.0	4
66	Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network. Heliyon, 2021, 7, e06331.	3.2	4
67	Deep learning for preliminary profiling of panoramic images. Oral Radiology, 2023, 39, 275-281.	1.9	4
68	Normal model construction for statistical image analysis of torso FDG-PET images based on anatomical standardization by CT images from FDG-PET/CT devices. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 777-787.	2.8	3
69	Non-Invasive Assessment of Hepatic Fibrosis by Elastic Measurement of Liver Using Magnetic Resonance Tagging Images. Applied Sciences (Switzerland), 2018, 8, 437.	2.5	3
70	Analysis of Blood Vessel Intersections in Fundus Images. Japanese Journal of Radiological Technology, 2000, 56, 507-509.	0.1	3
71	Automated Detection of Gastric Cancer by Retrospective Endoscopic Image Dataset Using U-Net R-CNN. Applied Sciences (Switzerland), 2021, 11, 11275.	2.5	3
72	Automated Extraction of Cerebral Infarction Region in Head MR Image Using Pseudo Cerebral Infarction Image by CycleGAN. Applied Sciences (Switzerland), 2022, 12, 489.	2.5	3

#	Article	IF	CITATIONS
73	Automated X-ray inspection method for fillet-less mounted chip components. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, 195-197.	1.4	2
74	Model-Based Approach to Recognize the Rectus Abdominis Muscle in CT Images. IEICE Transactions on Information and Systems, 2013, E96.D, 869-871.	0.7	2
75	Automated detection of nerve fiber layer defects on retinal fundus images using fully convolutional network for early diagnosis of glaucoma. Proceedings of SPIE, 2017, , .	0.8	2
76	Development of a Computer-aided Diagnosis System Using Fuzzy Inference in ^<201>TlCl Exercise Myocardial Scintigraphy. Japanese Journal of Radiological Technology, 2000, 56, 377-383.	0.1	2
77	MTF Measurement in MRI Using a Complex Subtraction Method. Japanese Journal of Radiological Technology, 2001, 57, 1225-1232.	0.1	2
78	Estimating subjective evaluation of low-contrast resolution using convolutional neural networks. Physical and Engineering Sciences in Medicine, 2021, 44, 1285-1296.	2.4	2
79	MEASUREMENTS OF WIENER SPECTRA OF LASER PRINTER IN A COMPUTED RADIOGRAPHY. Japanese Journal of Radiological Technology, 1992, 48, 1939-1944.	0.1	2
80	Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net. IEEE Access, 2021, 9, 155555-155563.	4.2	2
81	Tooth recognition of 32 tooth types by branched single shot multibox detector and integration processing in panoramic radiographs. Journal of Medical Imaging, 2022, 9, .	1.5	2
82	Dose reduction technique in diagnostic X-ray computed tomography by use of 6-channel multileaf collimators. Radiological Physics and Technology, 2017, 10, 60-67.	1.9	1
83	Hybrid Scheme for Automated Classification of Pulmonary Nodules Using PET/CT Images and Patient Information. Applied Sciences (Switzerland), 2020, 10, 4225.	2.5	1
84	Development of Pathological Diagnosis Support System Using Micro-computed Tomography. Acta Histochemica Et Cytochemica, 2021, 54, 49-56.	1.6	1
85	Automated Classification of Cerebral Arteries in MRA Images and Its Application to Maximum Intensity Projection. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	1
86	Comparison of Doctors' Readings with Results of CAD System Detection in Mammography. Japanese Journal of Radiological Technology, 2000, 56, 436-442.	0.1	1
87	The Analysis of the Substrate with High-Density Packaging Using the Oblique Computed Tomography. Journal of Japan Institute of Electronics Packaging, 2007, 10, 528-532.	0.1	1
88	1. INTRODUCTION (IMAGE EVALUATION OF DIGITAL RADIOGRAPHY : ITS METHODS, PROBLEMS AND) Tj ETQq 0	0 0 rgBT /	Overlock 10 T
89	Prognosis Prediction of Lung Cancer Patients Using CT Images: Feature Extraction by Convolutional Neural Network and Prediction by Machine Learning. Japanese Journal of Radiological Technology, 2022, , .	0.1	1
90	A robust conversion method of radioactivities between plastic and Nal scintillation well counters	2.7	0

⁰ for long-term quality control and quality assurance. EJNMMI Physics, 2016, 3, 18.

Ηιroshi Fujita

#	Article	IF	CITATIONS
91	Exploring the current status of the development and practical application of AI-CAD in the field of breast cancer screening. Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast) Tj ETQq1 1 0.7	'84 3.1 4 rg	BT Øverlock
92	Automated Elimination of Rib Edge Artifacts in Chest Temporal subtraction Technique. Japanese Journal of Radiological Technology, 2000, 56, 503-506.	0.1	0
93	INTERLABORATORY COMPARISON OF MTF MEASUREMENT OF SCREEN-FILM SYSTEMS USING SLIT IMAGES. Japanese Journal of Radiological Technology, 1993, 49, 1879-1887.	0.1	0
94	ANALYSIS OF SCATTERED RADIATION FROM A SQUARE-WAVE CHART BY MONTE CARLO SIMULATION. Japanese Journal of Radiological Technology, 1994, 50, 1716-1725.	0.1	0
95	ERRORS IN MTF MEASUREMENTS CAUSED BY INACCURACY OF LEAD THICKNESS OF SQUARE WAVE CHART. Japanese Journal of Radiological Technology, 1994, 50, 14-20.	0.1	0
96	Development of a Computer-aided Diagnostic System via Computer Network : A Mannogram CAD System via the World Wide Web. Japanese Journal of Radiological Technology, 1999, 55, 298-303.	0.1	0
97	Function Integrated Diagnostic Assistance Based on MCA Models. , 2022, , 67-77.		0
98	Investigation on continual training of computer-aided diagnosis systems by semi-supervised learning. , 2022, , .		0