Christopher B Ruff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799789/publications.pdf

Version: 2024-02-01

163 papers 16,815 citations

14655 66 h-index 124 g-index

199 all docs 199 docs citations

199 times ranked 6032 citing authors

#	Article	IF	Citations
1	Body mass and encephalization in Pleistocene Homo. Nature, 1997, 387, 173-176.	27.8	809
2	Who's afraid of the big bad Wolff?: "Wolff's law―and bone functional adaptation. American Journal of Physical Anthropology, 2006, 129, 484-498.	2.1	764
3	Morphological adaptation to climate in modern and fossil hominids. American Journal of Physical Anthropology, 1994, 37, 65-107.	2.1	576
4	Postcranial robusticity inHomo. I: Temporal trends and mechanical interpretation. American Journal of Physical Anthropology, 1993, 91, 21-53.	2.1	524
5	Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation. American Journal of Physical Anthropology, 1983, 60, 359-381.	2.1	489
6	Predicting Femoral Neck Strength From Bone Mineral Data. Investigative Radiology, 1990, 25, 6-18.	6.2	485
7	Postcranial robusticity inHomo. II: Humeral bilateral asymmetry and bone plasticity. American Journal of Physical Anthropology, 1994, 93, 1-34.	2.1	419
8	Variation in Human Body Size and Shape. Annual Review of Anthropology, 2002, 31, 211-232.	1.5	418
9	Limb bone bilateral asymmetry: variability and commonality among modern humans. Journal of Human Evolution, 2006, 50, 203-218.	2.6	377
10	Structural Trends in the Aging Femoral Neck and Proximal Shaft: Analysis of the Third National Health and Nutrition Examination Survey Dual-Energy X-Ray Absorptiometry Data. Journal of Bone and Mineral Research, 2000, 15, 2297-2304.	2.8	375
11	Sex differences in ageâ€related remodeling of the femur and tibia. Journal of Orthopaedic Research, 1988, 6, 886-896.	2.3	359
12	Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. American Journal of Physical Anthropology, 1991, 86, 397-413.	2.1	339
13	Climate and body shape in hominid evolution. Journal of Human Evolution, 1991, 21, 81-105.	2.6	325
14	Biomechanics of the hip and birth in earlyHomo. American Journal of Physical Anthropology, 1995, 98, 527-574.	2.1	322
15	Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. Journal of Human Evolution, 1987, 16, 391-416.	2.6	320
16	Body size, body shape, and long bone strength in modern humans. Journal of Human Evolution, 2000, 38, 269-290.	2.6	317
17	Postcranial robusticity inHomo. III: Ontogeny. American Journal of Physical Anthropology, 1994, 93, 35-54.	2.1	299
18	Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects. American Journal of Physical Anthropology, 2002, 119, 305-342.	2.1	288

#	Article	IF	CITATIONS
19	Human body mass estimation: A comparison of ?morphometric? and ?mechanical? methods. American Journal of Physical Anthropology, 2004, 125, 331-342.	2.1	264
20	Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: II. Sex, age, and side differences. American Journal of Physical Anthropology, 1983, 60, 383-400.	2.1	253
21	Revision of the Fully technique for estimating statures. American Journal of Physical Anthropology, 2006, 130, 374-384.	2.1	227
22	Stature and body mass estimation from skeletal remains in the European Holocene. American Journal of Physical Anthropology, 2012, 148, 601-617.	2.1	219
23	Structural Adaptation to Changing Skeletal Load in the Progression Toward Hip Fragility: The Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 2001, 16, 1108-1119.	2.8	217
24	Differential Susceptibility to Hypertension Is Due to Selection during the Out-of-Africa Expansion. PLoS Genetics, 2005, 1, e82.	3.5	208
25	Structural changes in the femur with the transition to agriculture on the Georgia coast. American Journal of Physical Anthropology, 1984, 64, 125-136.	2.1	200
26	Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone, 2003, 33, 317-329.	2.9	199
27	Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data. Calcified Tissue International, 1992, 50, 24-29.	3.1	198
28	Hindlimb articular surface allometry in hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 1988, 17, 687-714.	2.6	195
29	Body Size and Body Shape. , 1993, , 234-265.		189
30	Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. marine corps recruits. Journal of Bone and Mineral Research, 1996, 11, 645-653.	2.8	187
31	Body size and body shape in early hominins $\hat{a} \in \hat{a}$ implications of the Gona Pelvis. Journal of Human Evolution, 2010, 58, 166-178.	2.6	187
32	Body size prediction from juvenile skeletal remains. American Journal of Physical Anthropology, 2007, 133, 698-716.	2.1	173
33	Long bone articular and diaphyseal structure in Old World monkeys and apes. II: Estimation of body mass. American Journal of Physical Anthropology, 2003, 120, 16-37.	2.1	171
34	Ontogenetic adaptation to bipedalism: age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. Journal of Human Evolution, 2003, 45, 317-349.	2.6	145
35	Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. Journal of Human Evolution, 2005, 48, 381-392.	2.6	143
36	Gradual decline in mobility with the adoption of food production in Europe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7147-7152.	7.1	143

#	Article	IF	CITATIONS
37	Recent origin of low trabecular bone density in modern humans. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 366-371.	7.1	133
38	Relative limb strength and locomotion in <i>Homo habilis</i> . American Journal of Physical Anthropology, 2009, 138, 90-100.	2.1	130
39	Diaphyseal Cross-sectional Geometry of Near Eastern Middle Palaeolithic Humans: The Femur. Journal of Archaeological Science, 1999, 26, 409-424.	2.4	124
40	Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3552-3556.	7.1	124
41	Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. Journal of Human Evolution, 2004, 47, 221-235.	2.6	122
42	Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. American Journal of Physical Anthropology, 2012, 147, 661-670.	2.1	118
43	Relative variation in human proximal and distal limb segment lengths. American Journal of Physical Anthropology, 2001, 116, 26-33.	2.1	114
44	Structural and Mechanical Indicators of Limb Specialization in Primates. Folia Primatologica, 1985, 45, 61-75.	0.7	113
45	Body size, body proportions, and mobility in the Tyrolean "lcemanâ€. Journal of Human Evolution, 2006, 51, 91-101.	2.6	109
46	Structural Allometry of the Femur and Tibia in Hominoidea and Macaca. Folia Primatologica, 1987, 48, 9-49.	0.7	106
47	The effects of locomotion on the structural characteristics of avian limb bones. Zoological Journal of the Linnean Society, 2008, 153, 601-624.	2.3	104
48	Patterns of skeletal histologic change through time: Comparison of an archaic native american population with modern populations. The Anatomical Record, 1990, 226, 307-313.	1.8	101
49	Body mass prediction from skeletal frame size in elite athletes. American Journal of Physical Anthropology, 2000, 113, 507-517.	2.1	94
50	Frontiers of Contact: Bioarchaeology of Spanish Florida. Journal of World Prehistory, 2001, 15, 69-123.	3.6	92
51	Body mass, sexual dimorphism and femoral proportions of Proconsul from Rusinga and Mfangano Islands, Kenya. Journal of Human Evolution, 1989, 18, 515-536.	2.6	91
52	Hand dominance and bilateral asymmetry in the structure of the second metacarpal. American Journal of Physical Anthropology, 1994, 94, 203-211.	2.1	91
53	Diaphyseal cross-sectional geometry of the Boxgrove 1 Middle Pleistocene human tibia. Journal of Human Evolution, 1999, 37, 1-25.	2.6	87
54	Use of computed tomography in skeletal structure research. American Journal of Physical Anthropology, 1986, 29, 181-196.	2.1	86

#	Article	IF	CITATIONS
55	Articular structure and function inHylobates, Colobus, andPapio. American Journal of Physical Anthropology, 1994, 94, 395-408.	2.1	85
56	Long Bone Shaft Robusticity and Body Proportions of the Saint-Césaire 1 Châtelperronian Neanderthal. Journal of Archaeological Science, 1999, 26, 753-773.	2.4	80
57	Stature estimation formulae for indigenous North American populations. American Journal of Physical Anthropology, 2010, 141, 190-207.	2.1	80
58	Stature estimation in ancient Egyptians: A new technique based on anatomical reconstruction of stature. American Journal of Physical Anthropology, 2008, 136, 147-155.	2.1	79
59	Femoral/humeral strength in early African Homo erectus. Journal of Human Evolution, 2008, 54, 383-390.	2.6	79
60	Limb Bone Structural Proportions and Locomotor Behavior in A.L. 288-1 ("Lucy"). PLoS ONE, 2016, 11, e0166095.	2.5	78
61	Allometry between length and cross-sectional dimensions of the femur and tibia inHomo sapiens sapiens. American Journal of Physical Anthropology, 1984, 65, 347-358.	2.1	75
62	Technical note: Revised fully stature estimation technique. American Journal of Physical Anthropology, 2007, 133, 817-818.	2.1	74
63	New Approaches to Structural Evolution of Limb Bones in Primates. Folia Primatologica, 1989, 53, 142-159.	0.7	72
64	Postcranial estimates of body weight inProconsul, with a note on a distal tibia ofP. major from Napak, Uganda. American Journal of Physical Anthropology, 1995, 97, 391-402.	2.1	72
65	Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque. American Journal of Physical Anthropology, 1989, 79, 357-367.	2.1	70
66	Cross-sectional morphology of the SK 82 and 97 proximal femora. American Journal of Physical Anthropology, 1999, 109, 509-521.	2.1	69
67	Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei) Tj ETQq $1\ 1\ 0.784$	314 rgBT 2.6	/Oygrlock 10
68	Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. Journal of Human Evolution, 2018, 115, 85-111.	2.6	69
69	Diaphyseal Cross-sectional Geometry of Near Eastern Middle Palaeolithic Humans: The Tibia. Journal of Archaeological Science, 1999, 26, 1289-1300.	2.4	67
70	Genetic contributions to variation in human stature in prehistoric Europe. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21484-21492.	7.1	64
71	Use of biplanar radiographs for estimating cross-sectional geometric properties of mandibles. The Anatomical Record, 1992, 232, 157-163.	1.8	61
72	The effects of distal limb segment shortening on locomotor efficiency in sloped terrain: Implications for Neandertal locomotor behavior. American Journal of Physical Anthropology, 2011, 146, 336-345.	2.1	61

#	Article	IF	Citations
73	The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe. Journal of Human Evolution, 2016, 92, 37-49.	2.6	61
74	Morphology and Biomechanics of the Pinniped Jaw: Mandibular Evolution Without Mastication. Anatomical Record, 2013, 296, 1049-1063.	1.4	60
75	Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. American Journal of Physical Anthropology, 1995, 98, 101-119.	2.1	59
76	Bioarchaeology of Neolithic \tilde{A} ‡atalh \tilde{A} ¶y \tilde{A} ½k reveals fundamental transitions in health, mobility, and lifestyle in early farmers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12615-12623.	7.1	59
77	The Reconstruction of the Pelvis. , 1993, , 221-233.		57
78	Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. American Journal of Physical Anthropology, 2010, 142, 328-334.	2.1	56
79	Dietary effects on development of the human mandibular corpus. American Journal of Physical Anthropology, 2011, 145, 615-628.	2.1	56
80	Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). Journal of Human Evolution, 2012, 63, 741-749.	2.6	55
81	Ecogeographical patterning and stature prediction in fossil hominids: Comment on M.R. Feldesman and R.L. Fountain, American Journal of Physical Anthropology (1996) 100:207-224., 1997, 103, 137-140.		54
82	Radiographic estimation of long bone cross-sectional geometric properties. American Journal of Physical Anthropology, 1993, 90, 207-213.	2.1	53
83	Curved beam model of the proximal femur for estimating stress using dual-energy x-ray absorptiometry derived structural geometry. Journal of Orthopaedic Research, 1996, 14, 483-492.	2.3	53
84	Low trabecular bone density in recent sedentary modern humans. American Journal of Physical Anthropology, 2017, 162, 550-560.	2.1	53
85	Evolution of the Hominid Hip. , 1998, , 449-469.		53
86	Robusticity versus Shape: The Functional Interpretation of Neandertal Appendicular Morphology Jinruigaku Zasshi = the Journal of the Anthropological Society of Nihon, 1991, 99, 257-278.	0.2	51
87	Mechanical Constraints on the Hominin Pelvis and the "Obstetrical Dilemma― Anatomical Record, 2017, 300, 946-955.	1.4	48
88	Body mass estimation from knee breadth, with application to early hominins. American Journal of Physical Anthropology, 2015, 158, 198-208.	2.1	45
89	Bioarchaeology of Neolithic \tilde{A} ‡atalh \tilde{A} ¶y \tilde{A} ½k: Lives and Lifestyles of an Early Farming Society in Transition. Journal of World Prehistory, 2015, 28, 27-68.	3.6	45
90	Femoral neck structure and function in early hominins. American Journal of Physical Anthropology, 2013, 150, 512-525.	2.1	43

#	Article	IF	Citations
91	Structure and composition of the Trinil femora: Functional and taxonomic implications. Journal of Human Evolution, 2015, 80, 147-158.	2.6	43
92	Femoral ontogeny and locomotor biomechanics of Dryosaurus lettowvorbecki (Dinosauria,) Tj ETQqO 0 0 rgBT	/Overlgck :	10 Tf 50 702 T
93	Interpreting skeletal growth in the past from a functional and physiological perspective. American Journal of Physical Anthropology, 2013, 150, 29-37.	2.1	42
94	Diachronic patterns of change in structural properties of the femur in the prehistoric American Southwest. American Journal of Physical Anthropology, 1988, 75, 113-127.	2.1	40
95	Early modern human remains from eastern Asia: the Yamashita-cho 1 immature postcrania. Journal of Human Evolution, 1996, 30, 299-314.	2.6	38
96	Humeral Crossâ€Sectional Shape in Suspensory Primates and Sloths. Anatomical Record, 2013, 296, 545-556.	1.4	38
97	Age Trends in Femur Stresses From a Simulated Fall on the Hip Among Men and Women: Evidence of Homeostatic Adaptation Underlying the Decline in Hip BMD. Journal of Bone and Mineral Research, 2006, 21, 1425-1432.	2.8	37
98	The anomalous archaicHomo femur from Berg Aukas, Namibia: A biomechanical assessment. , 1999, 110, 379-391.		34
99	Long Bone Structural Analyses and the Reconstruction of Past Mobility: A Historical Review. , 2014, , 13-29.		32
100	Functional morphology of Proconsul patellas from Rusinga Island, Kenya, with implications for other Miocene-Pliocene catarrhines. Journal of Human Evolution, 1995, 29, 1-19.	2.6	31
101	Growth tracking of femoral and humeral strength from infancy through late adolescence. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 1030-1037.	1.5	31
102	Body mass estimation in hominoids: Age and locomotor effects. Journal of Human Evolution, 2018, 115, 36-46.	2.6	31
103	A reassessment of demographic estimates for Pecos Pueblo. American Journal of Physical Anthropology, 1981, 54, 147-151.	2.1	30
104	How much more would KNM-WT 15000 have grown?. Journal of Human Evolution, 2015, 80, 74-82.	2.6	30
105	Age changes in geometry and mineral content of the lower limb bones. Annals of Biomedical Engineering, 1984, 12, 573-584.	2.5	27
106	Experimental testing of a DEXA-derived curved beam model of the proximal femur. Journal of Orthopaedic Research, 1998, 16, 394-398.	2.3	26
107	Age differences in craniofacial dimensions among adults from Indian Knoll, Kentucky. American Journal of Physical Anthropology, 1980, 53, 101-108.	2.1	24
108	Gracilization of the Modern Human Skeleton. American Scientist, 2006, 94, 508.	0.1	24

#	Article	IF	CITATIONS
109	Articular scaling and body mass estimation in platyrrhines and catarrhines: Modern variation and application to fossil anthropoids. Journal of Human Evolution, 2018, 115, 20-35.	2.6	23
110	The locomotion of <i>Babakotia radofilai</i> inferred from epiphyseal and diaphyseal morphology of the humerus and femur. Journal of Morphology, 2016, 277, 1199-1218.	1.2	21
111	The Effect of Vertebral Numerical Variation on Anatomical Stature Estimates. Journal of Forensic Sciences, 2010, 55, 464-466.	1.6	20
112	The contribution of cancellous bone to long bone strength and rigidity. American Journal of Physical Anthropology, 1983, 61, 141-143.	2.1	19
113	Phylogenetic and environmental effects on limb bone structure in gorillas. American Journal of Physical Anthropology, 2018, 166, 353-372.	2.1	19
114	Long bone diaphyseal shape follows different ontogenetic trajectories in captive and wild gorillas. American Journal of Physical Anthropology, 2018, 167, 366-376.	2.1	19
115	Ageâ€related trends in vertebral dimensions. Journal of Anatomy, 2015, 226, 434-439.	1.5	18
116	Populationâ€specific stature estimation from long bones in the early medieval Pohansko (Czech) Tj ETQq0 0 0 rş	gBT_/Overl	ock 10 Tf 50
117	Physical burden and lower limb bone structure at the origin of agriculture in the levant. American Journal of Physical Anthropology, 2016, 161, 26-36.	2.1	18
118	Growth tracking of femoral and humeral strength from infancy through late adolescence. Acta Paediatrica, International Journal of Paediatrics, 2005, 94, 1030-1037.	1.5	17
119	Predicting skeletal stature using ancient <scp>DNA</scp> . American Journal of Biological Anthropology, 2022, 177, 162-174.	1.1	15
120	Technical note: An R program for automating bone cross section reconstruction. American Journal of Physical Anthropology, 2010, 142, 665-669.	2.1	14
121	A radiographic study of permanent molar development in wild Virunga mountain gorillas of known chronological age from <scp>R</scp> wanda. American Journal of Physical Anthropology, 2017, 163, 129-147.	2.1	14
122	Gorilla calcaneal morphological variation and ecological divergence. American Journal of Physical Anthropology, 2021, 174, 49-65.	2.1	13
123	Introduction to special issue: Body mass estimation $\hat{a} \in \mathbb{C}^n$ Methodological issues and fossil applications. Journal of Human Evolution, 2018, 115, 1-7.	2.6	12
124	A quantitative assessment of cross-sectional cortical bone remodeling in the femoral diaphysis following hip arthroplasty in elderly females. Journal of Orthopaedic Research, 1990, 8, 883-891.	2.3	11
125	Calcaneal shape variation in humans, nonhuman primates, and early hominins. Journal of Human Evolution, 2021, 159, 103050.	2.6	10
126	Computed tomographic analysis of the internal structure of the metacarpals and its implications for hand use, pathology, and surgical intervention. Anatomical Science International, 2018, 93, 231-237.	1.0	9

#	Article	IF	CITATIONS
127	The association between knee breadth and body mass: The Northern Finland Birth Cohort 1966 case study. American Journal of Physical Anthropology, 2019, 170, 196-206.	2.1	8
128	Effects of age and body proportions on stature estimation. American Journal of Physical Anthropology, 2019, 168, 370-377.	2.1	8
129	Body mass estimation from footprint size in hominins. Journal of Human Evolution, 2021, 156, 102997.	2.6	8
130	Functional morphology in the pages of the <i>AJPA</i> . American Journal of Physical Anthropology, 2018, 165, 688-704.	2.1	7
131	Long bone structural proportions and locomotor behavior in Cercopithecidae. Journal of Human Evolution, 2019, 132, 47-60.	2.6	7
132	Ontogenetic scaling of fore limb and hind limb joint posture and limb bone crossâ€sectional geometry in vervets and baboons. American Journal of Physical Anthropology, 2016, 161, 72-83.	2.1	6
133	Body mass estimation in hominins from humeral articular dimensions. American Journal of Physical Anthropology, 2020, 173, 480-499.	2.1	6
134	Bilateral asymmetry and developmental plasticity of the humerus in modern humans. American Journal of Physical Anthropology, 2021, 174, 418-433.	2.1	6
135	Skeletal ageing in Virunga mountain gorillas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190606.	4.0	5
136	Scaling and relative size of the human, nonhuman ape, and baboon calcaneus. Anatomical Record, 2022, 305, 100-122.	1.4	5
137	Effects of reduced mobility on trabecular bone density in captive big cats. Royal Society Open Science, 2022, 9, 211345.	2.4	5
138	Of mice and men (and women): Comment on Peacock et al., 2018. American Journal of Physical Anthropology, 2018, 167, 185-189.	2.1	4
139	Adapting in the Arctic: Habitual activity and landscape interaction in Late Holocene hunterâ€gatherers from Alaska. American Journal of Physical Anthropology, 2021, 176, 3-20.	2.1	4
140	Long bone cross-sectional geometry. , 2020, , 307-320.		4
141	Body proportions and environmental adaptation in gorillas. American Journal of Biological Anthropology, 2022, 177, 501-529.	1.1	4
142	Locomotor Behavior and Body Mass of Paramys delicatus (Ischyromyidae, Rodentia) and Commentary on Other Early North American Paramyines. Journal of Mammalian Evolution, 2021, 28, 435-456.	1.8	2
143	Locomotion on the edge: Structural properties of the third metacarpal in Thoroughbred and Quarter Horse racehorses and feral Assateague Island ponies. Anatomical Record, 2021, 304, 771-786.	1.4	2
144	Further analyses of the Deep Skull femur from Niah Caves, Malaysia. Journal of Human Evolution, 2021, 161, 103089.	2.6	2

#	Article	IF	CITATIONS
145	Femoral ontogeny and locomotor biomechanics of Dryosaurus lettowvorbecki (Dinosauria,) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
146	Maleâ€male combat drives bite force evolution in the absence of mastication. FASEB Journal, 2011, 25, 867.1.	0.5	1
147	Body, Evolution of. , 2015, , 723-727.		1
148	Reconstructing Locomotor Behaviors: Crossâ€sectional Property Analysis Brings More to the Story of How Earliest Euprimates Moved. FASEB Journal, 2018, 32, 780.17.	0.5	1
149	Bone structural data for the Denver longitudinal growth study. American Journal of Biological Anthropology, 0, , .	1.1	1
150	Humeral Cross-Sectional Shape in Suspensory Primates and Sloths. Anatomical Record, 2013, 296, C1-C1.	1.4	0
151	Decreasing emotional distress among first-year medical students. Medical Education, 2016, 50, 565-566.	2.1	0
152	Appendix 2(a)., 2017,, 443-447.		0
153	Appendix 2(b)., 2017,, 449-449.		0
154	Full Skeleton Stature Estimation. , 2018, , 105-113.		0
155	Calcaneal allometry in humans and nonhuman primates. FASEB Journal, 2021, 35, .	0.5	0
156	Obstetrical adaptation in the human bony pelvis: A morphometric approach. FASEB Journal, 2009, 23, 648.6.	0.5	0
157	Scaling in the primate masticatory apparatus. FASEB Journal, 2010, 24, lb10.	O.5	0
158	Body Mass Estimators in Fossorial Mammals and the Body Mass of Extinct Palaeanodonta (Pholidotamorpha). FASEB Journal, 2013, 27, 747.16.	0.5	0
159	Geometric Properties of the Third Metacarpal Bone: A Comparison Between Thoroughbred and Quarter Horse Racehorses. FASEB Journal, 2018, 32, 514.2.	0.5	0
160	The Relationship Between Joint Size and Trabecular Bone Density in Human and Nonhuman Primates. FASEB Journal, 2018, 32, 780.19.	0.5	0
161	Differences between Human and Great Ape Distal Humeral Articular Axes. FASEB Journal, 2018, 32, 364.5.	0.5	O
162	Choice of Size Parameter Alters Interpretation of Fossil Hominin Distal Humeral Morphology. FASEB Journal, 2019, 33, 612.9.	0.5	О

#	Article	IF	CITATIONS
163	Human calcaneal external shape relative to activity and foraging levels. FASEB Journal, 2020, 34, 1-1.	0.5	O