Cüneyt TürkeÅŸ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799744/publications.pdf

Version: 2024-02-01

42 papers 2,354 citations

35 h-index 276539 41 g-index

42 all docs 42 docs citations

42 times ranked

516 citing authors

#	Article	IF	CITATIONS
1	Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorganic Chemistry, 2020, 100, 103897.	2.0	125
2	Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry, 2019, 89, 103004.	2.0	112
3	Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 2020, 163, 1970-1988.	3.6	80
4	Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorganic Chemistry, 2021, 113, 105009.	2.0	78
5	Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity. Applied Biochemistry and Biotechnology, 2019, 189, 318-329.	1.4	70
6	Synthesis, characterisation, biological evaluation and <i>in silico </i> studies of sulphonamide Schiff bases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 950-962.	2.5	70
7	Investigation of Potential Paraoxonase-I Inhibitors by Kinetic and Molecular Docking Studies: Chemotherapeutic Drugs. Protein and Peptide Letters, 2019, 26, 392-402.	0.4	70
8	Benzenesulfonamide derivatives as potent acetylcholinesterase, \hat{l} ±-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 2021, 39, 5449-5460.	2.0	69
9	Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 2014, 66, 74-80.	1.5	68
10	Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1672-1680.	2.0	67
11	Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as αâ€Glycosidase and Cholinesterase Inhibitors. Chemistry and Biodiversity, 2021, 18, e2000958.	1.0	67
12	A potential risk factor for paraoxonase 1: <i>in silico</i> and <i>in-vitro</i> analysis of the biological activity of proton-pump inhibitorsâ€. Journal of Pharmacy and Pharmacology, 2019, 71, 1553-1564.	1.2	66
13	Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2021, 354, e2000282.	2.1	65
14	New Isoindoleâ€1,3â€dione Substituted Sulfonamides as Potent Inhibitors of Carbonic Anhydrase and Acetylcholinesterase: Design, Synthesis, and Biological Evaluation. ChemistrySelect, 2019, 4, 13347-13355.	0.7	63
15	Sulfonamides incorporating ketene <i>N,S</i> acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Archiv Der Pharmazie, 2020, 353, e1900383.	2.1	62
16	Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. International Journal of Biological Macromolecules, 2020, 146, 1111-1123.	3.6	61
17	Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3â€diaryltriazeneâ€substituted sulfathiazole derivatives. Archiv Der Pharmazie, 2020, 353, e2000102.	2.1	59
18	A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chemistry, 2021, 19, 347-357.	1.0	58

#	Article	IF	CITATIONS
19	Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chemical Papers, 2020, 74, 1395-1405.	1.0	57
20	Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv Der Pharmazie, 2021, 354, e2100294.	2.1	56
21	Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Molecular Diversity, 2022, 26, 2825-2845.	2.1	56
22	In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-I (hPON1) from human serum. Environmental Toxicology and Pharmacology, 2016, 42, 252-257.	2.0	55
23	Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and î±-glucosidase inhibitors. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8752-8764.	2.0	54
24	Molecular Docking Studies and Inhibition Properties of Some Antineoplastic Agents against Paraoxonase-I. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 887-896.	0.9	53
25	Human serum paraoxonase-1 (hPON1): <i>in vitro</i> ii>inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 622-628.	2.5	52
26	Gadolinium-based contrast agents: <i>in vitro</i> paraoxonase 1 inhibition, <i>in silico</i> studies. Drug and Chemical Toxicology, 2021, 44, 508-517.	1,2	52
27	Synthesis and paroxonase activities of novel bromophenols. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1073-1079.	2.5	51
28	Transitionâ€Metal Complexes of Bidentate Schiffâ€Base Ligands: In Vitro and In Silico Evaluation as Nonâ€Classical Carbonic Anhydrase and Potential Acetylcholinesterase Inhibitors. ChemistrySelect, 2021, 6, 7278-7284.	0.7	51
29	Some calcium-channel blockers: kinetic and <i>in silico</i> studies on paraoxonase-I. Journal of Biomolecular Structure and Dynamics, 2022, 40, 77-85.	2.0	50
30	Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12008-12021.	2.0	50
31	Inhibition of Human Serum Paraoxonase-I with Antimycotic Drugs: In Vitro and In Silico Studies. Applied Biochemistry and Biotechnology, 2020, 190, 252-269.	1.4	47
32	Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. Journal of Organometallic Chemistry, 2020, 927, 121542.	0.8	46
33	In Vitro and In Silico Studies on the Toxic Effects of Antibacterial Drugs as Human Serum Paraoxonase 1 Inhibitor. ChemistrySelect, 2019, 4, 9731-9736.	0.7	45
34	Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorganic Chemistry, 2021, 117, 105473.	2.0	43
35	Design, synthesis, and biological activity of novel dithiocarbamateâ€methylsulfonyl hybrids as carbonic anhydrase inhibitors. Archiv Der Pharmazie, 2022, 355, e2200132.	2.1	42
36	Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolinâ€4(<scp>3<i>H</i>,</scp>)â€one derivatives as potential aldose reductase inhibitors. Drug Development Research, 2021, , .	1.4	41

#	Article	IF	CITATIONS
37	Infection Medications: Assessment Inâ€Vitro Glutathione Sâ€Transferase Inhibition and Molecular Docking Study. ChemistrySelect, 2021, 6, 11915-11924.	0.7	35
38	Inhibition Effects of Phenolic Compounds on Human Serum Paraoxonase-1 Enzyme. Journal of the Institute of Science and Technology, 0, , 1013-1022.	0.3	29
39	Calcium Channel Blockers: The Effect of Glutathione Sâ€Transferase Enzyme Activity and Molecular Docking Studies. ChemistrySelect, 2021, 6, 11137-11143.	0.7	29
40	Ophthalmic drugs: in vitro paraoxonase 1 inhibition and molecular docking studies. Biotechnology and Applied Biochemistry, 2022, 69, 2273-2283.	1.4	22
41	Methyl benzoate derivatives: in vitro Paraoxonase 1 inhibition and in silico studies. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	1.4	20
42	Inhibition Effects of Gemcitabine Hydrochloride, Acyclovir, and 5-Fluorouracil on Human Serum Paraoxonase-1 (hPON1): In Vitro. Open Journal of Biochemistry, 2014, 1, 15-24.	0.2	8