Eduardo Banados

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799515/publications.pdf

Version: 2024-02-01

89 papers

6,597 citations

71102 41 h-index 80 g-index

90 all docs 90 docs citations

90 times ranked

4589 citing authors

#	Article	IF	CITATIONS
1	An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature, 2018, 553, 473-476.	27.8	726
2	Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science, 2017, 358, 1570-1574.	12.6	517
3	THE PAN-STARRS1 DISTANT zÂ>Â5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE. Astrophysical Journal, Supplement Series, 2016, 227, 11.	7.7	266
4	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science, 2017, 358, 1574-1578.	12.6	240
5	A Luminous Quasar at Redshift 7.642. Astrophysical Journal Letters, 2021, 907, L1.	8.3	237
6	Physical Properties of 15 Quasars at zÂ≳Â6.5. Astrophysical Journal, 2017, 849, 91.	4.5	230
7	THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT zÂ>Â5.7. Astrophysical Journal, 2016, 833, 222.	4.5	225
8	An ALMA [C ii] Survey of 27 Quasars at zÂ>Â5.94. Astrophysical Journal, 2018, 854, 97.	4.5	220
9	PÅniuÄâ€~ena: A Luminous zÂ=Â7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole. Astrophysical Journal Letters, 2020, 897, L14.	8.3	202
10	Quantitative Constraints on the Reionization History from the IGM Damping Wing Signature in Two Quasars at zÂ>Â7. Astrophysical Journal, 2018, 864, 142.	4.5	197
11	THE IDENTIFICATION OF <i>z</i> -DROPOUTS IN PAN-STARRS1: THREE QUASARS AT 6.5< <i>z</i> < 6.7. Astrophysical Journal Letters, 2015, 801, L11.	8.3	151
12	Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature, 2017, 545, 457-461.	27.8	149
13	DISCOVERY OF EIGHT <i>z</i> å^1⁄4 6 QUASARS FROM Pan-STARRS1. Astronomical Journal, 2014, 148, 14.	4.7	126
14	Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7. Astrophysical Journal, 2019, 873, 35.	4.5	115
15	Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at 6.4Â≲ÂzÂ≲Â6.9 with DESI Legacy Imagir Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at zÂâ^¼Â6.7. Astrophysical Journal, 2019, 884, 30.	ng 4.5	114
16	Copious Amounts of Dust and Gas in a $z\hat{A}=\hat{A}7.5$ Quasar Host Galaxy. Astrophysical Journal Letters, 2017, 851, L8.	8.3	103
17	Constraints on reionization from the $\langle i \rangle z \langle i \rangle = 7.5$ QSO ULASJ1342+0928. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5094-5101.	4.4	97
18	A Significantly Neutral Intergalactic Medium Around the Luminous zÂ=Â7 Quasar J0252–0503. Astrophysical Journal, 2020, 896, 23.	4.5	97

#	Article	IF	CITATIONS
19	CONSTRAINING THE RADIO-LOUD FRACTION OF QUASARS AT <i>z</i> 804, 118.	4.5	87
20	The Discovery of a Luminous Broad Absorption Line Quasar at a Redshift of 7.02. Astrophysical Journal Letters, 2018, 869, L9.	8.3	82
21	Exploring Reionization-era Quasars. IV. Discovery of Six New zÂ≳Â6.5 Quasars with DES, VHS, and unWISE Photometry. Astronomical Journal, 2019, 157, 236.	4.7	82
22	Kiloparsec-scale ALMA Imaging of [C ii] and Dust Continuum Emission of 27 Quasar Host Galaxies at zÂâ^1/4Â6. Astrophysical Journal, 2020, 904, 130.	4.5	81
23	The Compact,Ââ^1⁄41 kpc Host Galaxy of a Quasar at a Redshift of 7.1. Astrophysical Journal, 2017, 837, 146.	4.5	79
24	Dust Emission in an Accretion-rate-limited Sample of zÂ≳Â6 Quasars. Astrophysical Journal, 2018, 866, 159.	4.5	77
25	Probing Early Supermassive Black Hole Growth and Quasar Evolution with Near-infrared Spectroscopy of 37 Reionization-era Quasars at 6.3 < z ≠7.64. Astrophysical Journal, 2021, 923, 262.	4.5	76
26	First discoveries of <i>z</i> Ââ^1⁄4Â6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2260-2267.	4.4	72
27	Probing the thermal state of the intergalactic medium at <i>>z</i> & amp;gt; 5 with the transmission spikes in high-resolution  Ly l± forest spectra. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5091-5109.	4.4	69
28	The REQUIEM Survey. I. A Search for Extended Lyα Nebular Emission Around 31 zÂ>Â5.7 Quasars. Astrophysical Journal, 2019, 887, 196.	4.5	68
29	The X-SHOOTER/ALMA Sample of Quasars in the Epoch of Reionization. I. NIR Spectral Modeling, Iron Enrichment, and Broad Emission Line Properties. Astrophysical Journal, 2020, 905, 51.	4.5	66
30	An ALMA Multiline Survey of the Interstellar Medium of the Redshift 7.5 Quasar Host Galaxy J1342+0928. Astrophysical Journal, 2019, 881, 63.	4.5	62
31	The Kinematics of z \hat{a} % 6 Quasar Host Galaxies. Astrophysical Journal, 2021, 911, 141.	4.5	62
32	Detecting and Characterizing Young Quasars. I. Systemic Redshifts and Proximity Zone Measurements. Astrophysical Journal, 2020, 900, 37.	4.5	56
33	THE GALAXY ENVIRONMENT OF A QSO AT <i>z</i> â^1/4 5.7. Astrophysical Journal, 2013, 773, 178.	4. 5	55
34	The Discovery of a Highly Accreting, Radio-loud Quasar at $z = 6.82$. Astrophysical Journal, 2021, 909, 80.	4.5	55
35	Resolved [C ii] Emission from <i>z</i> > 6 Quasar Host–Companion Galaxy Pairs. Astrophysical Journal, 2019, 882, 10.	4.5	53
36	BRIGHT [C II] 158 <i>î¼</i> m EMISSION IN A QUASAR HOST GALAXY AT <i>z</i> = 6.54. Astrophysical Journal Letters, 2015, 805, L8.	8.3	52

#	Article	IF	Citations
37	NO OVERDENSITY OF LYMAN-ALPHA EMITTING GALAXIES AROUND A QUASAR AT zÂâ^1/4Â5.7. Astrophysical Journ 2017, 834, 83.	al 4.5	50
38	A Powerful Radio-loud Quasar at the End of Cosmic Reionization. Astrophysical Journal Letters, 2018, 861, L14.	8.3	50
39	THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS. Astrophysical Journal, 2015, 806, 244.	4.5	49
40	No Evidence for Enhanced [O iii]Â88 μm Emission in a zÂâ^¼Â6 Quasar Compared to Its Companion Starburstin Galaxy. Astrophysical Journal Letters, 2018, 869, L22.	g _{8.3}	49
41	Predicting Quasar Continua near Lyl $\hat{\textbf{l}}$ ± with Principal Component Analysis. Astrophysical Journal, 2018, 864, 143.	4.5	49
42	Mapping the Lyα Emission around a zÂâ^1/4Â6.6 QSO with MUSE: Extended Emission and a Companion at a Close Separation. Astrophysical Journal, 2017, 848, 78.	4.5	43
43	Mg ii Absorption at 2Â<ÂZÂ<Â7 with Magellan/Fire. III. Full Statistics of Absorption toward 100 High-redshift QSOs*. Astrophysical Journal, 2017, 850, 188.	4.5	42
44	No Evidence for [C ii] Halos or High-velocity Outflows in zÂ≳Â6 Quasar Host Galaxies. Astrophysical Journal, 2020, 904, 131.	4.5	41
45	Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Lyl $^\pm$ Forest over 5 < z < 6. Astrophysical Journal, 2021, 923, 223.	4.5	39
46	A Metal-poor Damped Lyl± System at Redshift 6.4. Astrophysical Journal, 2019, 885, 59.	4.5	38
47	No Redshift Evolution in the Broad-line-region Metallicity up to zÂ=Â7.54: Deep Near-infrared Spectroscopy of ULAS J1342+0928. Astrophysical Journal, 2020, 898, 105.	4.5	38
48	Large-scale Environment of a $z=6.61$ Luminous Quasar Probed by Lyl± Emitters and Lyman Break Galaxies < $-$. Astrophysical Journal, 2018, 856, 109.	4.5	37
49	Heavy Element Absorption Systems at 5.0Â<ÂzÂ<Â6.8: Metal-poor Neutral Gas and a Diminishing Signature of Highly Ionized Circumgalactic Matter. Astrophysical Journal, 2019, 882, 77.	4.5	37
50	Revealing the Accretion Physics of Supermassive Black Holes at Redshift z â ¹ / ₄ 7 with Chandra and Infrared Observations. Astrophysical Journal, 2021, 908, 53.	4.5	35
51	Suppression of black-hole growth by strong outflows at redshifts 5.8–6.6. Nature, 2022, 605, 244-247.	27.8	33
52	ALMA multiline survey of the ISM in two quasar host-companion galaxy pairs at z $\&$ gt; 6. Astronomy and Astrophysics, 0, , .	5.1	32
53	Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928. Astrophysical Journal Letters, 2018, 856, L25.	8.3	31
54	ALMA and HST Kiloparsec-scale Imaging of a Quasar-galaxy Merger at ZÂâ‰^Â6.2. Astrophysical Journal, 2019, 880, 157.	4.5	30

#	Article	IF	CITATIONS
55	Constraining the Quasar Radio-loud Fraction at z $\hat{a}^{-1/4}$ 6 with Deep Radio Observations. Astrophysical Journal, 2021, 908, 124.	4.5	30
56	X-Ray Observations of a zÂâ^¼Â6.2 Quasar/Galaxy Merger. Astrophysical Journal, 2019, 887, 171.	4.5	29
57	The zÂ=Â7.54 Quasar ULAS J1342+0928 Is Hosted by a Galaxy Merger. Astrophysical Journal Letters, 2019, 881, L23.	8.3	28
58	Long Dark Gaps in the Ly \hat{l}^2 Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra. Astrophysical Journal, 2022, 932, 76.	4.5	28
59	Probing the Nature of High-redshift Weak Emission Line Quasars: A Young Quasar with a Starburst Host Galaxy. Astrophysical Journal, 2020, 903, 34.	4.5	27
60	Supermassive black holes in cosmological simulations – II: the AGN population and predictions for upcoming X-ray missions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3015-3042.	4.4	27
61	Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of <i>JWST</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 3751-3767.	4.4	27
62	Resolving the Powerful Radio-loud Quasar at <i>z</i> â ¹ / ₄ 6. Astrophysical Journal, 2018, 861, 86.	4.5	26
63	Filling in the Quasar Redshift Gap at zÂâ^1⁄4Â5.5. II. A Complete Survey of Luminous Quasars in the Post-reionization Universe. Astrophysical Journal, 2019, 871, 199.	4.5	25
64	ALMA 200 pc Imaging of a z $\hat{a}^{-1/4}$ 7 Quasar Reveals a Compact, Disk-like Host Galaxy. Astrophysical Journal, 2022, 927, 21.	4.5	25
65	Ly <i>α</i> Halos around <i>z</i> â^¼ 6 Quasars. Astrophysical Journal, 2019, 881, 131.	4.5	24
66	A Significant Excess in Major Merger Rate for AGNs with the Highest Eddington Ratios at z < 0.2. Astrophysical Journal, 2020, 904, 79.	4.5	23
67	A Quasar Discovered at redshift 6.6 from Pan-STARRS1. Monthly Notices of the Royal Astronomical Society, 0, , stw3287.	4.4	21
68	No Evidence for Millimeter Continuum Source Overdensities in the Environments of zÂ≳Â6 Quasars. Astrophysical Journal, 2018, 867, 153.	4.5	21
69	X-Ray Observations of a [C ii]-bright, zÂ=Â6.59 Quasar/Companion System. Astrophysical Journal, 2020, 900, 189.	4.5	20
70	Metallicity in Quasar Broad-line Regions at Redshift â^¼ 6. Astrophysical Journal, 2022, 925, 121.	4.5	20
71	Molecular gas in <i>z</i> â^¼ 6 quasar host galaxies. Astronomy and Astrophysics, 2022, 662, A60.	5.1	20
72	Chemical abundance of $\langle i \rangle z \langle i \rangle \sim 6$ quasar broad-line regions in the XQR-30 sample. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1801-1819.	4.4	20

#	Article	IF	Citations
73	Random Forests as a Viable Method to Select and Discover High-redshift Quasars. Astronomical Journal, 2021, 162, 72.	4.7	18
74	Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years. Astrophysical Journal, 2021, 911, 120.	4.5	17
75	<i>Chandra</i> and <i>Magellan</i> /FIRE follow-up observations of PSO167–13: An X-ray weak QSO at <i>z</i> = 6.515. Astronomy and Astrophysics, 2021, 649, A133.	5.1	17
76	Spectral Energy Distributions of Companion Galaxies to zÂâ^¼Â6 Quasars. Astrophysical Journal, 2019, 881, 163.	4.5	16
77	Constraining Galaxy Overdensities around Three z \hat{a}^4 6.5 Quasars with ALMA and MUSE. Astrophysical Journal, 2022, 927, 141.	4.5	16
78	Resolving the Radio Emission from the Quasar P172+18 at $z=6.82$. Astronomical Journal, 2021, 161, 207.	4.7	15
79	Discovery of intergalactic bridges connecting two faint <i>z</i> â^1/4 3 quasars. Astronomy and Astrophysics, 2019, 631, A18.	5.1	14
80	Strong Mg ii and Fe ii Absorbers at 2.2Â<ÂzÂ<Â6.0. Astrophysical Journal, 2021, 906, 32.	4.5	13
81	The Impact of Powerful Jets on the Far-infrared Emission of an Extreme Radio Quasar at z \hat{a}^4 6. Astrophysical Journal, 2021, 920, 150.	4.5	11
82	SCUBA2 High Redshift Bright Quasar Survey: Far-infrared Properties and Weak-line Features. Astrophysical Journal, 2020, 900, 12.	4.5	10
83	A Multiwavelength Study of ELAN Environments (AMUSE ²). Mass Budget, Satellites Spin Alignment, and Gas Infall in a Massive z â ¹ / ₄ 3 Quasar Host Halo. Astrophysical Journal, 2022, 930, 72.	4.5	8
84	X-Ray Evidence Against the Hypothesis that the Hyperluminous $z=6.3$ Quasar J0100+2802 is Lensed. Astrophysical Journal Letters, 2021, 922, L24.	8.3	6
85	The Decoupled Kinematics of High-z QSO Host Galaxies and Their Lyl± Halos. Astrophysical Journal, 2022, 929, 86.	4.5	6
86	Staring at the Shadows of Archaic Galaxies: Damped Lyl̂ \pm and Metal Absorbers Toward a Young z $\hat{a}^1/4$ 6 Weak-line Quasar. Astronomical Journal, 2022, 163, 251.	4.7	6
87	Quasar clustering at redshift 6. Astronomy and Astrophysics, 2021, 654, A79.	5.1	3
88	Discovery of Two Quasars at zÂ=Â5 from the OGLE Survey. Astrophysical Journal, 2019, 878, 115.	4.5	3
89	A Closer Look at Two of the Most Luminous Quasars in the Universe. Astrophysical Journal, 2021, 906, 12.	4.5	3