Susruta Majumdar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3799305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies towards safer opioid analgesics—A review of old and upcoming targets. British Journal of Pharmacology, 2023, 180, 975-993.	5.4	26
2	Predicted Mode of Binding to and Allosteric Modulation of the μ-Opioid Receptor by Kratom's Alkaloids with Reported Antinociception <i>In Vivo</i> . Biochemistry, 2021, 60, 1420-1429.	2.5	26
3	Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry, 2021, 60, 1381-1400.	2.5	37
4	Kratom Alkaloids, Natural and Semi-Synthetic, Show Less Physical Dependence and Ameliorate Opioid Withdrawal. Cellular and Molecular Neurobiology, 2021, 41, 1131-1143.	3.3	36
5	Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. ELife, 2021, 10, .	6.0	40
6	The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology, 2021, 185, 108445.	4.1	9
7	Site selective C–H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy. Nature Communications, 2021, 12, 3858.	12.8	25
8	Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chemical Neuroscience, 2021, 12, 2661-2678.	3.5	20
9	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	6.4	33
10	Synthesis and Characterization of Azido Aryl Analogs of IBNtxA for Radio-Photoaffinity Labeling Opioid Receptors in Cell Lines and in Mouse Brain. Cellular and Molecular Neurobiology, 2021, 41, 977-993.	3.3	8
11	Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules, 2021, 11, 1525.	4.0	12
12	Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Frontiers in Pharmacology, 2021, 12, 764885.	3.5	14
13	Oxidative Metabolism as a Modulator of Kratom's Biological Actions. Journal of Medicinal Chemistry, 2021, 64, 16553-16572.	6.4	26
14	Imaging Sigma-1 Receptor (S1R) Expression Using Iodine-124-Labeled 1-(4-Iodophenyl)-3-(2-adamantyl)guanidine ([124I]IPAG). Molecular Imaging and Biology, 2020, 22, 358-366.	2.6	8
15	G proteinâ€biased kratomâ€alkaloids and synthetic carfentanilâ€amide opioids as potential treatments for alcohol use disorder. British Journal of Pharmacology, 2020, 177, 1497-1513.	5.4	53
16	Synthesis and Pharmacology of a Novel μ–δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. Journal of Medicinal Chemistry, 2020, 63, 13618-13637.	6.4	22
17	Biased Opioid Ligands. Molecules, 2020, 25, 4257.	3.8	79
18	The antinociceptive effects of a dual kappa-delta opioid receptor agonist in the mouse formalin test. Behavioural Pharmacology, 2020, 31, 174-178.	1.7	9

Susruta Majumdar

#	Article	IF	CITATIONS
19	Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. ELife, 2020, 9, .	6.0	42
20	7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 2019, 5, 992-1001.	11.3	120
21	MP1104, a mixed kappa-delta opioid receptor agonist has anti-cocaine properties with reduced side-effects in rats. Neuropharmacology, 2019, 150, 217-228.	4.1	13
22	Synthesis of spiro-2,6-dioxopiperazine and spiro-2,6-dioxopyrazine scaffolds using amino acids in a three-component reaction to generate potential Sigma-1 (If1) receptor selective ligands. European Journal of Medicinal Chemistry, 2019, 164, 241-251.	5.5	5
23	Pharmacological Characterization of Levorphanol, a G-Protein Biased Opioid Analgesic. Anesthesia and Analgesia, 2019, 128, 365-373.	2.2	15
24	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	28.9	299
25	Truncated μ-Opioid Receptors With 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesthesia and Analgesia, 2018, 126, 1050-1057.	2.2	22
26	Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology, 2018, 134, 101-107.	4.1	78
27	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
28	Strategy for making safer opioids bolstered. Nature, 2018, 553, 286-288.	27.8	22
29	Genetic dissociation of morphine analgesia from hyperalgesia in mice. Psychopharmacology, 2017, 234, 1891-1900.	3.1	19
30	Synthesis and pharmacological evaluation of novel selective MOR agonist 6β-pyridinyl amidomorphines exhibiting long-lasting antinociception. MedChemComm, 2017, 8, 152-157.	3.4	6
31	Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo. JCI Insight, 2017, 2, .	5.0	14
32	Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles. Molecules, 2016, 21, 19.	3.8	112
33	Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants. Synapse, 2016, 70, 395-407.	1.2	40
34	Synthetic and Receptor Signaling Explorations of the <i>Mitragyna</i> Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. Journal of the American Chemical Society, 2016, 138, 6754-6764.	13.7	233
35	Tetrapeptide Endomorphin Analogs Require Both Full Length and Truncated Splice Variants of the Mu Opioid Receptor Gene <i>Oprm1</i> for Analgesia. ACS Chemical Neuroscience, 2016, 7, 1717-1727.	3.5	11
36	Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. Journal of Medicinal Chemistry, 2016, 59, 8381-8397.	6.4	229

Susruta Majumdar

#	Article	IF	CITATIONS
37	Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3663-3668.	7.1	27
38	Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. Journal of Clinical Investigation, 2015, 125, 2626-2630.	8.2	55
39	Synthesis and Pharmacology of Halogenated δ-Opioid-Selective [<scp>d</scp> -Ala ²]Deltorphin II Peptide Analogues. ACS Chemical Neuroscience, 2015, 6, 905-910.	3.5	6
40	Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction. ACS Chemical Neuroscience, 2015, 6, 1570-1577.	3.5	39
41	Mild, Pd-catalyzed stannylation of radioiodination targets. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1761-1764.	2.2	16
42	Synthesis and Characterization of a Dual Kappa-Delta Opioid Receptor Agonist Analgesic Blocking Cocaine Reward Behavior. ACS Chemical Neuroscience, 2015, 6, 1813-1824.	3.5	42
43	A novel opioid for photoaffinity labeling opioid receptor complexes in nativelyâ€expressing tissues. FASEB Journal, 2015, 29, 772.6.	0.5	0
44	Pharmacologic Characterization in the Rat of a Potent Analgesic Lacking Respiratory Depression, IBNtxA. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 710-718.	2.5	22
45	Three-Component Coupling Approach for the Synthesis of Diverse Heterocycles Utilizing Reactive Nitrilium Trapping. Organic Letters, 2014, 16, 1668-1671.	4.6	20
46	Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain, 2014, 155, 2063-2070.	4.2	40
47	Novel 6β-acylaminomorphinans with analgesic activity. European Journal of Medicinal Chemistry, 2013, 69, 786-789.	5.5	15
48	Synthesis and Evaluation of Aryl-Naloxamide Opiate Analgesics Targeting Truncated Exon 11-Associated μ Opioid Receptor (MOR-1) Splice Variants. Journal of Medicinal Chemistry, 2012, 55, 6352-6362.	6.4	52
49	Generation of novel radiolabeled opiates through site-selective iodination. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4001-4004.	2.2	44
50	Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19778-19783.	7.1	126
51	Exploration of novel radioiodine″abeling techniques for opioid peptides. FASEB Journal, 2010, 24, 581.1.	0.5	0