Oleg Stolyarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creep and stress relaxation behavior of woven polyester fabrics: experiment and modeling. Mechanics of Time-Dependent Materials, 2023, 27, 207-226.	4.4	5
2	Comparison of pull-out behavior of glass, basalt, and carbon rovings embedded in fine-grain concrete and geopolymer. Materialpruefung/Materials Testing, 2022, 64, 746-753.	2.2	0
3	Neural Network Installation of the Functional Dependence of Mechanical Behavior in the Expansion of Elastic Material from Temperature. Communications in Computer and Information Science, 2021, , 229-237.	0.5	0
4	Commingled composites. , 2021, , 439-460.		3
5	Analysis of reinforcement efficiency and microscopic characterization of glass and carbon roving geometry in prestressed concrete composites. Journal of Composite Materials, 2021, 55, 3293-3305.	2.4	Ο
6	Enhanced mechanical properties of hot-rolled beryllium foils. Materialia, 2020, 11, 100726.	2.7	3
7	Effect of cold rolling route on deformation mechanism and texture evolution of thin beryllium foils: Experiment and VPSC simulation. Materials Characterization, 2020, 164, 110350.	4.4	8
8	Effects of specimen shape and process parameters on the mechanical properties of thin beryllium foils. Materials Today: Proceedings, 2020, 30, 660-664.	1.8	1
9	Structure evolution and mechanical properties of beryllium foils subjected to cold rolling and high-vacuum annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 750, 60-69.	5.6	7
10	Effect of coating type on the mechanical performance of warp-knitted fabrics and cement-based composites. Journal of Composite Materials, 2018, 52, 2563-2576.	2.4	17
11	Effect of introduction of fullerene soot on mechanical properties of unidirectional thermoplastic tape. MATEC Web of Conferences, 2018, 245, 04011.	0.2	4
12	Characterization of shear behavior of warp-knitted fabrics applied to composite reinforcement. Journal of the Textile Institute, 2017, 108, 89-94.	1.9	7
13	Characterization of change in polypropylene spunbond nonwoven fabric fiber orientation during deformation based on image analysis and Fourier transforms. Journal of Strain Analysis for Engineering Design, 2017, 52, 457-466.	1.8	8
14	Influence of the fabric construction parameters and roving type on the tensile property retention of high-performance rovings in warp-knitted reinforced fabrics and cement-based composites. Journal of Industrial Textiles, 2017, 47, 453-471.	2.4	21
15	Neural network model of rupture conditions for elastic material sample based on measurements at static loading under different strain rates. Journal of Physics: Conference Series, 2016, 772, 012032.	0.4	16
16	Neural network modeling of conditions of destruction of wood plank based on measurements. Journal of Physics: Conference Series, 2016, 772, 012041.	0.4	10
17	Manufacturing of textiles for civil engineering applications. , 2016, , 3-24.		28
18	Carbon rovings as strain sensors for structural health monitoring of engineering materials and structures. Journal of Strain Analysis for Engineering Design, 2016, 51, 482-492.	1.8	25

OLEG STOLYAROV

#	Article	IF	CITATIONS
19	Relationship Between Structure and Viscoelastic Properties of Geosynthetics. MATEC Web of Conferences, 2016, 53, 01015.	0.2	1
20	Flexural Behavior of Textile-Reinforced Concrete. MATEC Web of Conferences, 2016, 53, 01016.	0.2	13
21	Estimating the Distribution of Different Types of Fibers in Cross Sections of Two-Component Hybrid Yarn. Fibre Chemistry, 2016, 47, 394-396.	0.2	0
22	Process–structure relationship of carbon/ polyphenylene sulfide commingled hybrid yarns used for thermoplastic composites. Journal of Industrial Textiles, 2016, 45, 1661-1673.	2.4	13
23	Strain measurement in concrete using embedded carbon roving-based sensors. Materialpruefung/Materials Testing, 2016, 58, 767-771.	2.2	0
24	Application of Stepped Isothermal Method for Prediction the Creep Behavior of Extruded Polypropylene Geogrid. Applied Mechanics and Materials, 2015, 725-726, 611-616.	0.2	6
25	Effects of fabric structures on the tensile properties of warp-knitted fabrics used as concrete reinforcements. Textile Reseach Journal, 2015, 85, 1934-1945.	2.2	32
26	Effects of structure type on viscoelastic properties of geosynthetics. Magazine of Civil Engineering, 2015, 56, 11-18.	1.9	4
27	Structure and properties of textile reinforced concrete. Magazine of Civil Engineering, 2015, 59, 50-56.	1.9	1
28	Influence of process parameters on filament distribution and blending quality in commingled yarns used for thermoplastic composites. Journal of Thermoplastic Composite Materials, 2014, 27, 350-363.	4.2	23
29	Hybrid Textile Yarns and Thermoplastic Composites Based on Them. Fibre Chemistry, 2013, 45, 217-220.	0.2	5
30	A method for investigating blending quality of commingled yarns. Textile Reseach Journal, 2013, 83, 122-129.	2.2	16
31	Mechanical properties of polymer composites reinforced with knit fabrics made of high-strength aramid fibres. Fibre Chemistry, 2009, 41, 53-55.	0.2	5
32	Deformation behavior of medical synthetic monofilaments. Fibre Chemistry, 2008, 40, 318-321.	0.2	2
33	Title is missing!. Fibre Chemistry, 2003, 35, 164-167.	0.2	8
34	Strength and Stability of Arched Frame Structures Made of Brittle Material. Applied Mechanics and Materials, 0, 725-726, 758-767.	0.2	0
35	The Effect of Weathering and Biological Exposure on the Tensile Properties of Nonwoven Geotextile. Applied Mechanics and Materials, 0, 725-726, 636-641.	0.2	0
36	Development and Investigation of Mechanical Properties of Glass Fiber Reinforced Concrete. Applied Mechanics and Materials, 0, 725-726, 642-647.	0.2	0

#	Article	IF	CITATIONS
37	Design of Lightweight Glass-Fibre-Reinforced Epoxy I-Beam for Structural Applications. Applied Mechanics and Materials, 0, 725-726, 617-622.	0.2	1