
Jon Storm-Mathisen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>L</scp> â€lactate induces neurogenesis in the mouse ventricularâ€subventricular zone via the lactate receptor HCA ₁ . Acta Physiologica, 2021, 231, e13587.	3.8	25
2	The NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mechanisms of Ageing and Development, 2020, 185, 111194.	4.6	36
3	Slc38a1 Conveys Astroglia-Derived Glutamine into GABAergic Interneurons for Neurotransmitter GABA Synthesis. Cells, 2020, 9, 1686.	4.1	13
4	The Lactate Receptor HCA1 Is Present in the Choroid Plexus, the Tela Choroidea, and the Neuroepithelial Lining of the Dorsal Part of the Third Ventricle. International Journal of Molecular Sciences, 2020, 21, 6457.	4.1	10
5	Per Andersen 1930–2020. Neuron, 2020, 106, 366-368.	8.1	0
6	Targeting NAD+ in translational research to relieve diseases and conditions of metabolic stress and ageing. Mechanisms of Ageing and Development, 2020, 186, 111208.	4.6	31
7	Blood lactate dynamics in awake and anaesthetized mice after intraperitoneal and subcutaneous injections of lactate—sex matters. PeerJ, 2020, 8, e8328.	2.0	5
8	A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochemical Research, 2019, 44, 22-37.	3.3	116
9	NO-age in Norway. Translational Medicine of Aging, 2019, 3, 37-39.	1.3	1
10	High Intensity Interval Training Ameliorates Mitochondrial Dysfunction in the Left Ventricle of Mice with Type 2 Diabetes. Cardiovascular Toxicology, 2019, 19, 422-431.	2.7	11
11	Are the neuroprotective effects of exercise training systemically mediated?. Progress in Cardiovascular Diseases, 2019, 62, 94-101.	3.1	76
12	Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood-brain barrier in a rat model of attention-deficit/hyperactivity disorder suggests hyperactivity could be a form of self-treatment. Behavioural Brain Research, 2019, 360, 279-285.	2.2	16
13	Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 2019, 360, 209-215.	2.2	10
14	Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. Biochemical Journal, 2018, 475, 749-758.	3.7	29
15	Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP. Frontiers in Molecular Neuroscience, 2018, 11, 148.	2.9	57
16	Recent advances in hippocampal structure and function. Cell and Tissue Research, 2018, 373, 521-523.	2.9	1
17	Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 2017, 8, 15557.	12.8	321
18	A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiology of Aging, 2016, 48, 34-47.	3.1	30

#	Article	IF	CITATIONS
19	Observations on hippocampal mossy cells in mink (<i>Neovison vison</i>) with special reference to dendrites ascending to the granular and molecular layers. Hippocampus, 2016, 26, 229-245.	1.9	6
20	Lactate Transport and Receptor Actions in Retina: Potential Roles in Retinal Function and Disease. Neurochemical Research, 2016, 41, 1229-1236.	3.3	41
21	Neuroglial Transmission. Physiological Reviews, 2015, 95, 695-726.	28.8	160
22	The lactate receptor, Gâ€proteinâ€coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. Journal of Neuroscience Research, 2015, 93, 1045-1055.	2.9	150
23	Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H434-H449.	3.2	38
24	Reorganization of supramammillary–hippocampal pathways in the rat pilocarpine model of temporal lobe epilepsy: evidence for axon terminal sprouting. Brain Structure and Function, 2015, 220, 2449-2468.	2.3	30
25	Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism. Cerebral Cortex, 2014, 24, 2784-2795.	2.9	261
26	The glia doctrine: Addressing the role of glial cells in healthy brain ageing. Mechanisms of Ageing and Development, 2013, 134, 449-459.	4.6	28
27	Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD). Neuroscience, 2013, 242, 11-20.	2.3	17
28	Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus. Neuroscience, 2011, 192, 164-171.	2.3	13
29	A Role for Glutamate Transporters in the Regulation of Insulin Secretion. PLoS ONE, 2011, 6, e22960.	2.5	53
30	Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses. Cerebral Cortex, 2009, 19, 511-523.	2.9	20
31	System A Transporter SAT2 Mediates Replenishment of Dendritic Glutamate Pools Controlling Retrograde Signaling by Glutamate. Cerebral Cortex, 2009, 19, 1092-1106.	2.9	76
32	Vesicular Glutamate and GABA Transporters Sort to Distinct Sets of Vesicles in a Population of Presynaptic Terminals. Cerebral Cortex, 2009, 19, 241-248.	2.9	82
33	The spontaneously hypertensive rat model of ADHD – The importance of selecting the appropriate reference strain. Neuropharmacology, 2009, 57, 619-626.	4.1	176
34	N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 2009, 158, 353-364.	2.3	64
35	Protein trafficking, targeting, and interaction at the glutamate synapse. Neuroscience, 2009, 158, 1-3.	2.3	1
36	β-Amyloid 25-35 Peptide Reduces the Expression of Glutamine Transporter SAT1 in Cultured Cortical Neurons. Neurochemical Research, 2008, 33, 248-256.	3.3	12

#	Article	IF	CITATIONS
37	Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nature Protocols, 2008, 3, 144-152.	12.0	94
38	From cochlea to cortex: A tribute to Kirsten Kjelsberg Osen. Neuroscience, 2008, 154, 1-9.	2.3	1
39	The components required for amino acid neurotransmitter signaling are present in adipose tissues. Journal of Lipid Research, 2007, 48, 2123-2132.	4.2	16
40	Subcellular localization of the glutamate transporters GLAST and GLT at the neuromuscular junction in rodents. Neuroscience, 2007, 145, 579-591.	2.3	27
41	Changes in vesicular transporters for γ-aminobutyric acid and glutamate reveal vulnerability and reorganization of hippocampal neurons following pilocarpine-induced seizures. Journal of Comparative Neurology, 2007, 503, 466-485.	1.6	56
42	Coâ€localization and functional crossâ€talk between A ₁ and P2Y ₁ purine receptors in rat hippocampus. European Journal of Neuroscience, 2007, 26, 890-902.	2.6	49
43	Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. Journal of Neurochemistry, 2007, 101, 806-814.	3.9	53
44	Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. Journal of Comparative Neurology, 2006, 497, 683-701.	1.6	75
45	Induction and Targeting of the Glutamine Transporter SN1 to the Basolateral Membranes of Cortical Kidney Tubule Cells during Chronic Metabolic Acidosis Suggest a Role in pH Regulation. Journal of the American Society of Nephrology: JASN, 2005, 16, 869-877.	6.1	61
46	Ultrastructural quantification of glutamate receptors at excitatory synapses in hippocampus of synapsin I+II double knock-out mice. Neuroscience, 2005, 136, 769-777.	2.3	12
47	Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. Journal of Cell Science, 2004, 117, 3749-3758.	2.0	68
48	Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct Synaptic Release Sites. Science, 2004, 304, 1815-1819.	12.6	419
49	Endocannabinoid-Independent Retrograde Signaling at Inhibitory Synapses in Layer 2/3 of Neocortex: Involvement of Vesicular Glutamate Transporter 3. Journal of Neuroscience, 2004, 24, 4978-4988.	3.6	90
50	Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. Journal of Comparative Neurology, 2004, 480, 264-280.	1.6	239
51	Commissural propriospinal connections between the lateral aspects of laminae III-IV in the lumbar spinal cord of rats. Journal of Comparative Neurology, 2004, 480, 364-377.	1.6	34
52	GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission. Molecular and Cellular Neurosciences, 2004, 26, 156-165.	2.2	60
53	Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia, 2003, 41, 260-275.	4.9	62
54	The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14488-14493.	7.1	498

#	Article	IF	CITATIONS
55	Cell-specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle. European Journal of Neuroscience, 2002, 15, 1615-1631.	2.6	124
56	The Expression of Vesicular Glutamate Transporters Defines Two Classes of Excitatory Synapse. Neuron, 2001, 31, 247-260.	8.1	1,114
57	Coupled and uncoupled proton movement by amino acid transport system N. EMBO Journal, 2001, 20, 7041-7051.	7.8	100
58	Redistribution of Neuroactive Amino Acids in Hippocampus and Striatum during Hypoglycemia: A Quantitative Immunogold Study. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 41-51.	4.3	62
59	A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6441-6446.	7.1	70
60	Chapter II Aspartate—neurochemical evidence for a transmitter role. Handbook of Chemical Neuroanatomy, 2000, 18, 45-62.	0.3	9
61	Development, neurochemical properties, and axonal projections of a population of last-order premotor interneurons in the white matter of the chick lumbosacral spinal cord. , 2000, 286, 157-172.		5
62	Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. Journal of Comparative Neurology, 2000, 425, 10-23.	1.6	94
63	Protein Phosphatase-1 Regulation in the Induction of Long-Term Potentiation: Heterogeneous Molecular Mechanisms. Journal of Neuroscience, 2000, 20, 3537-3543.	3.6	91
64	Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer's disease. Journal of Neuroscience Research, 1999, 55, 218-229.	2.9	89
65	Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience, 1999, 88, 1083-1091.	2.3	101
66	Molecular Analysis of System N Suggests Novel Physiological Roles in Nitrogen Metabolism and Synaptic Transmission. Cell, 1999, 99, 769-780.	28.9	299
67	Dedication to Frode Fonnum. Progress in Brain Research, 1998, 116, xi-xii.	1.4	1
68	Chapter 3 Properties and localization of glutamate transporters. Progress in Brain Research, 1998, 116, 23-43.	1.4	98
69	The Vesicular GABA Transporter, VGAT, Localizes to Synaptic Vesicles in Sets of Glycinergic as Well as GABAergic Neurons. Journal of Neuroscience, 1998, 18, 9733-9750.	3.6	555
70	Synaptic Vesicular Localization and Exocytosis ofl-Aspartate in Excitatory Nerve Terminals: A Quantitative Immunogold Analysis in Rat Hippocampus. Journal of Neuroscience, 1998, 18, 6059-6070.	3.6	148
71	The Glutamate Transporter EAAT4 in Rat Cerebellar Purkinje Cells: A Glutamate-Gated Chloride Channel Concentrated near the Synapse in Parts of the Dendritic Membrane Facing Astroglia. Journal of Neuroscience, 1998, 18, 3606-3619.	3.6	317
72	Chapter 6 Molecular organization of cerebellar glutamate synapses. Progress in Brain Research, 1997, 114, 97-107.	1.4	14

#	Article	IF	CITATIONS
73	Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties. Neuroscience, 1997, 77, 1201-1212.	2.3	17
74	Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience, 1997, 79, 1137-1144.	2.3	82
75	Differential Developmental Expression of the Two Rat Brain Glutamate Transporter Proteins GLAST and GLT. European Journal of Neuroscience, 1997, 9, 1646-1655.	2.6	183
76	Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anatomy and Embryology, 1997, 195, 317-326.	1.5	97
77	Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience, 1996, 73, 509-518.	2.3	167
78	Cloning and expression of a neuronal rat brain glutamate transporter. Molecular Brain Research, 1996, 36, 163-168.	2.3	60
79	Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. , 1996, 365, 413-426.		88
80	?-aminobutyric acid and glycine in the baboon cochlear nuclei: An immunocytochemical colocalization study with reference to interspecies differences in inhibitory systems. Journal of Comparative Neurology, 1996, 369, 497-519.	1.6	55
81	Immunocytochemical Evidence that Glutamate is a Neurotransmitter in the Cochlear Nerve: A Quantitative Study in the Guinea-pig Anteroventral Cochlear Nucleus. European Journal of Neuroscience, 1996, 8, 79-91.	2.6	50
82	Selective Excitatory Amino Acid Uptake in Glutamatergic Nerve Terminals and in Glia in the Rat Striatum: Quantitative Electron Microscopic Immunocytochemistry of Exogenous D-Aspartate and Endogenous Glutamate and GABA. European Journal of Neuroscience, 1996, 8, 758-765.	2.6	53
83	Qualitative and quantitative analysis of glycine―and GABAâ€immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. Journal of Comparative Neurology, 1996, 365, 413-426.	1.6	1
84	la boutons to CCN neurones and motoneurones are enriched with glutamate-like immunoreactivity. NeuroReport, 1995, 6, 1975-1980.	1.2	33
85	Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. Journal of Neuroscience, 1995, 15, 1835-1853.	3.6	824
86	Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: A quantitative immunocytochemical analysis in guinea pig. Journal of Comparative Neurology, 1995, 357, 482-500.	1.6	54
87	Down-regulation of Glial Glutamate Transporters after Glutamatergic Denervation in the Rat Brain. European Journal of Neuroscience, 1995, 7, 2036-2041.	2.6	132
88	Synaptic organization of excitatory and inhibitory boutons associated with spinal neurons which project through the dorsal columns of the cat. Brain Research, 1995, 676, 103-112.	2.2	25
89	Quantification of excitatory amino acid uptake at intact glutamatergic synapses by immunocytochemistry of exogenous D-aspartate. Journal of Neuroscience, 1995, 15, 4417-4428.	3.6	71
90	Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release. Journal of Neuroscience, 1995, 15, 7168-7180.	3.6	36

#	Article	IF	CITATIONS
91	Glycine transporters are differentially expressed among CNS cells. Journal of Neuroscience, 1995, 15, 3952-3969.	3.6	494
92	Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron, 1995, 15, 711-720.	8.1	741
93	Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience, 1995, 64, iii-xvi.	2.3	26
94	Differential subcellular distribution of glutamate, and taurine in primary olfactory neurones. NeuroReport, 1994, 6, 145-148.	1.2	22
95	Colocalization of glutamate and glycine in bipolar cell terminals of the human retina. Experimental Brain Research, 1994, 98, 342-54.	1.5	30
96	Extrasynaptic localization of taurine-like immunoreactivity in the lamprey spinal cord. Journal of Comparative Neurology, 1994, 347, 301-311.	1.6	12
97	Differential Expression of Two Glial Glutamate Transporters in the Rat Brain: an In Situ Hybridization Study. European Journal of Neuroscience, 1994, 6, 936-942.	2.6	180
98	Colocalization of γ-aminobutyrate and gastrin in the rat antrum: An immunocytochemical and in situ hybridization study. Gastroenterology, 1994, 107, 137-148.	1.3	22
99	Chapter 7 Sodium/potassium-coupled glutamate transporters, a "newâ€family of eukaryotic proteins: do they have "new―physiological roles and could they be new targets for pharmacological intervention?. Progress in Brain Research, 1994, 100, 53-60.	1.4	12
100	Immunohistochemical evidence for coexistence of glycine and GABA in nerve terminals on cat spinal motoneurones. NeuroReport, 1994, 5, 889-892.	1.2	85
101	GABA- and glycine-immunoreactive neurons in the spinal cord of the carp,Cyprinus carpio. Journal of Comparative Neurology, 1993, 332, 59-68.	1.6	24
102	Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study. Experimental Brain Research, 1993, 96, 404-18.	1.5	62
103	Glutamate-like Immunoreactivity in Retinal Terminals of the Mouse Suprachiasmatic Nucleus. European Journal of Neuroscience, 1993, 5, 368-381.	2.6	184
104	Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience, 1993, 57, 97-111.	2.3	132
105	Chapter 19: Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Progress in Brain Research, 1992, 94, 225-241.	1.4	76
106	An [Na+ + K+]coupledl-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience, 1992, 51, 295-310.	2.3	419
107	An atlas of glycine- and CABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anatomy and Embryology, 1992, 186, 443-65.	1.5	215
108	Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992, 360, 464-467.	27.8	1,197

#	Article	IF	CITATIONS
109	The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: A light and electron microscopic study. Journal of Comparative Neurology, 1992, 325, 22-37.	1.6	80
110	Direct observations of synapses between L-glutamate-immunoreactive boutons and identified spinocervical tract neurones in the spinal cord of the cat. Journal of Comparative Neurology, 1992, 326, 485-500.	1.6	18
111	Aspartate- and Glutamate-like Immunoreactivities in Rat Hippocampal Slices: Depolarization-induced Redistribution and Effects of Precursors. European Journal of Neuroscience, 1991, 3, 1281-1299.	2.6	44
112	Clutamate, GABA, and glycine in the human retina: An immunocytochemical investigation. Journal of Comparative Neurology, 1991, 311, 483-494.	1.6	143
113	Distribution of glutamine-like immunoreactivity in the cerebellum of rat and baboon (Papio anubis) with reference to the issue of metabolic compartmentation. Anatomy and Embryology, 1991, 184, 213-223.	1.5	24
114	GABA-like and glycine-like immunoreactivities of the cochlear root nucleus in rat. Journal of Neurocytology, 1991, 20, 17-25.	1.5	49
115	GABA and glutamate-like immunoreactivity in processes presynaptic to afferents from hair plates on the proximal joints of the locust leg. Journal of Neurocytology, 1991, 20, 796-809.	1.5	22
116	Theodor Wilhelm Blackstad - A Unique Neuroanatomist and Human Being. Progress in Brain Research, 1990, 83, XIII-XV.	1.4	0
117	Projections to the pontine nuclei from choline acetyltransferase-like immunoreactive neurons in the brainstem of the cat. Journal of Comparative Neurology, 1990, 300, 183-195.	1.6	12
118	Chapter 8 A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Progress in Brain Research, 1990, 83, 99-114.	1.4	62
119	Immunocytochemistry of glutamate at the synaptic level Journal of Histochemistry and Cytochemistry, 1990, 38, 1733-1743.	2.5	117
120	Central boutons of glomeruli in the spinal cord of the cat are enriched withl-glutamate-like immunoreactivity. Neuroscience, 1990, 36, 83-104.	2.3	80
121	Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: A semiquantitative electron microscopic study in rats. Neuroscience, 1990, 39, 405-417.	2.3	120
122	Three types of GABA-immunoreactive cells in the lamprey spinal cord. Brain Research, 1990, 508, 172-175.	2.2	68
123	Terminals of group la primary afferent fibres in Clarke's column are enriched with l-glutamate-like immunoreactivity. Brain Research, 1990, 510, 346-350.	2.2	49
124	Immunocytochemical localization of glutamate, GABA and glycine in the human retina. , 1990, , 573-582.		1
125	Shapes and projections of neurons with immunoreactivity for gamma-aminobutyric acid in the guinea-pig small intestine. Cell and Tissue Research, 1989, 256, 293-301.	2.9	52
126	GABA-immunoreactive cells in the rat gastrointestinal epithelium. Anatomy and Embryology, 1989, 179, 221-226.	1.5	21

#	Article	IF	CITATIONS
127	GABA, glycine, glutamate, aspartate and taurine in the perihypoglossal nuclei: an immunocytochemical investigation in the cat with particular reference to the issue of amino acid colocalization. Experimental Brain Research, 1989, 78, 345-57.	1.5	53
128	Taurine-like immunoreactivity in the brain of the honeybee. Journal of Comparative Neurology, 1988, 268, 60-70.	1.6	83
129	Immunocytochemical evidence suggests that taurine is colocalized with GABA in the Purkinje cell terminals, but that the stellate cell terminals predominantly contain GABA: a light- and electronmicroscopic study of the rat cerebellum. Experimental Brain Research, 1988, 72, 407-16.	1.5	71
130	Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Research, 1988, 450, 342-353.	2.2	220
131	Heterogeneous distribution of gaba-immunoreactive nerve fibers and axon terminals in the superior cervical ganglion of adult rat. Neuroscience, 1988, 26, 635-644.	2.3	33
132	Bipolar cells in the turtle retina are strongly immunoreactive for glutamate Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8321-8325.	7.1	150
133	Anatomy of Putative Glutamatergic Neurons. , 1988, , 39-70.		28
134	Tracing of neurons with glutamate or <i>Ĵ³</i> -aminobutyrate as putative transmitters. Biochemical Society Transactions, 1987, 15, 210-213.	3.4	9
135	Postnatal development of neurons containing both catecholaminergic and GABAergic traits in the rat main olfactory bulb. Brain Research, 1987, 403, 355-360.	2.2	58
136	Localization of amino acid neurotransmitters by immunocytochemistry. Trends in Neurosciences, 1987, 10, 250-255.	8.6	75
137	Anatomical organization of excitatory amino acid receptors and their pathways. Trends in Neurosciences, 1987, 10, 273-280.	8.6	700
138	Redistribution of transmitter amino acids in rat hippocampus and cerebellum during seizures induced byl-allylglycine and bicuculline: An immunocytochemical study with antisera against conjugated gaba, glutamate and aspartate. Neuroscience, 1987, 22, 17-27.	2.3	19
139	Immunocytochemical localization of GABA in cat myenteric plexus. Neuroscience Letters, 1987, 73, 27-32.	2.1	46
140	Gamma-aminobutyrate-like immunoreactivity in the thalamus of the cat. Neuroscience, 1987, 21, 781-805.	2.3	98
141	Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Experimental Brain Research, 1987, 66, 191-210.	1.5	199
142	Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Experimental Brain Research, 1987, 66, 211-21.	1.5	76
143	The early development of neurons with GABA immunoreactivity in the CNS of <i>Xenopus laevis</i> embryos. Journal of Comparative Neurology, 1987, 261, 435-449.	1.6	135
144	Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience, 1986, 19, 1045-1050.	2.3	352

#	Article	IF	CITATIONS
145	Implantation of D-[3H]aspartate loaded gel particles permits restricted uptake sites for transmitter-selective axonal transport. Experimental Brain Research, 1986, 63, 620-626.	1.5	23
146	Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature, 1986, 324, 255-257.	27.8	150
147	Na ⁺ â€Dependent "Binding―of Dâ€Aspartate in Brain Membranes Is Largely Due to Uptake into Membraneâ€Bounded Saccules. Journal of Neurochemistry, 1986, 47, 819-824.	3.9	49
148	Inhibition by K ⁺ of Na ⁺ â€Dependent Dâ€Aspartate Uptake into Brain Membrane Saccules. Journal of Neurochemistry, 1986, 47, 825-830.	3.9	14
149	Taurine in the hippocampal formation of the Senegalese baboon, Papio papio: an immunocytochemical study with an antiserum against conjugated taurine. Experimental Brain Research, 1985, 59, 457-62.	1.5	48
150	Immunocytochemical visualization of taurine: Neuronal localization in the rat cerebellum. Neuroscience Letters, 1985, 60, 255-260.	2.1	89
151	Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea-pig and senegalese baboon (Papio papio), with a note on the distribution of Î ³ -aminobutyrate. Neuroscience, 1985, 16, 589-606.	2.3	160
152	Glutamate―and GABAâ€containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. Journal of Comparative Neurology, 1984, 229, 374-392.	1.6	828
153	GABA-containing neurons in the thalamus and pretectum of the rodent. Anatomy and Embryology, 1984, 170, 197-207.	1.5	140
154	Uptake of d-aspartate and l-glutamate in excitatory axon terminals in hippocampus: Autoradiographic and biochemical comparison with Î ³ -aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience, 1984, 11, 79-100.	2.3	124
155	Immunocytochemical visualization of GABA fixed by glutaraldehyde in brain tissue. Neuropharmacology, 1984, 23, 855-857.	4.1	32
156	First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature, 1983, 301, 517-520.	27.8	878
157	Retrograde transport of d-[3H]aspartate in thalamocortical neurones. Neuroscience Letters, 1983, 42, 19-24.	2.1	68
158	The corticopontine projection: Axotomy-induced loss of high affinity l-glutamate and d-aspartate uptake, but not of γ-aminobutyrate uptake, glutamate decarboxylase or choline acetyltransferase, in the pontine nuclei. Neuroscience, 1983, 8, 449-457.	2.3	37
159	Amino Acid Compartments in Hippocampus: An Autoradiographic Approach. , 1982, , 395-410.		2
160	Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience, 1981, 6, 863-873.	2.3	535
161	K+-evoked Ca2+-dependent release of d-[3H]aspartate from terminals of the cortico-pontine pathway. Neuroscience Letters, 1981, 23, 181-186.	2.1	18
162	Uptake of [3H]glutamic acid in excitatory nerve endings: Light and electronmicroscopic observations in the hippocampal formation of the rat. Neuroscience, 1979, 4, 1237-1253.	2.3	157

#	ARTICLE	IF	CITATIONS
163	Asparate and/or glutamate may be transmitters in hippocampal efferents to septum and hypothalamus. Neuroscience Letters, 1978, 9, 65-70.	2.1	104
164	Localization of Putative Transmitters in the Hippocampal Formation: With a Note on the Connections to Septum and Hypothalamus. Novartis Foundation Symposium, 1978, , 49-86.	1.1	18
165	Localization of Transmitter Amino Acids: Application to Hippocampus and Septum. , 1978, , 155-171.		4
166	Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy. Brain Research, 1977, 120, 379-386.	2.2	212
167	Localization of transmitter candidates in the brain: the hippocampal formation as a model. Progress in Neurobiology, 1977, 8, 119-181.	5.7	400
168	High affinity uptake of glutamate in terminals of corticostriatal axons. Nature, 1977, 266, 377-378.	27.8	479
169	HISTAMINE SYNTHESIZING AFFERENTS TO THE HIPPOCAMPAL REGION. Journal of Neurochemistry, 1976, 26, 259-263.	3.9	87
170	High affinity uptake of GABA in presumed GABA-ergic nerve endings in rat brain. Brain Research, 1975, 84, 409-427.	2.2	86
171	Accumulation of glutamic acid decarboxylase in the proximal parts of presumed GABA-ergic neurones after axotomy. Brain Research, 1975, 87, 107-109.	2.2	23
172	Uptake of Transmitter Candidates as an Approach to their Localization. , 1975, , 123-135.		3
173	Effect of the convulsive agent 3-mercaptopropionic acid on the levels of GABA, other amino acids and glutamate decarboxylase in different regions of the rat brain. Biochemical Pharmacology, 1974, 23, 3053-3061.	4.4	172
174	Choline acetyltransferase and acetylcholinesterase in fascia dentata following lesion of the entorhinal afferents. Brain Research, 1974, 80, 181-197.	2.2	127