
Giuseppe Bonura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2007, 249, 185-194.	6.2	468
2	Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 2008, 350, 16-23.	4.3	367
3	H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 2004, 5, 611-615.	3.3	284
4	The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Applied Catalysis B: Environmental, 2014, 152-153, 152-161.	20.2	227
5	Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 2004, 270, 1-7.	4.3	214
6	Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel. Applied Catalysis A: General, 2009, 367, 77-83.	4.3	181
7	Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2CeO2 Ni supported catalysts. International Journal of Hydrogen Energy, 2006, 31, 2193-2199.	7.1	168
8	Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 2015, 17, 4921-4930.	9.0	134
9	Multifunctionality of Cu–ZnO–ZrO 2 /H-ZSM5 catalysts for the one-step CO 2 -to-DME hydrogenation reaction. Applied Catalysis B: Environmental, 2015, 162, 57-65.	20.2	133
10	CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules, 2018, 23, 31.	3.8	133
11	Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Applied Catalysis B: Environmental, 2013, 140-141, 16-24.	20.2	132
12	Basic evidences for methanol-synthesis catalyst design. Catalysis Today, 2009, 143, 80-85.	4.4	119
13	Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Applied Catalysis B: Environmental, 2015, 176-177, 522-531.	20.2	119
14	Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins. Applied Catalysis A: General, 2017, 547, 219-229.	4.3	119
15	Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today, 2014, 228, 51-57.	4.4	110
16	Surface-dependent oxidation of H 2 on CeO 2 surfaces. Journal of Catalysis, 2013, 297, 193-201.	6.2	109
17	Efficient catalytic hydrotreatment of Kraft lignin to alkylphenolics using supported NiW and NiMo catalysts in supercritical methanol. Green Chemistry, 2015, 17, 5046-5057.	9.0	106
18	Direct CO 2 -to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. Journal of CO2 Utilization, 2017, 18, 353-361.	6.8	101

#	Article	IF	CITATIONS
19	Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catalysis Today, 2011, 171, 251-256.	4.4	98
20	Probing the factors affecting structure and activity of the Au/CeO2 system in total and preferential oxidation of CO. Applied Catalysis B: Environmental, 2006, 66, 81-91.	20.2	96
21	Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous. ACS Sustainable Chemistry and Engineering, 2017, 5, 1738-1746.	6.7	90
22	Hydrogen production by glycerol steam reforming: How Mg doping affects the catalytic behaviour of Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2016, 41, 157-166.	7.1	81
23	DME production by CO2 hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catalysis Today, 2017, 281, 337-344.	4.4	75
24	Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. Journal of Power Sources, 2004, 132, 139-144.	7.8	72
25	Technologies for energetic exploitation of biodiesel chain derived glycerol: Oxy-fuels production by catalytic conversion. Applied Energy, 2013, 102, 63-71.	10.1	72
26	Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO2 hydrogenation. Journal of CO2 Utilization, 2018, 24, 398-406.	6.8	71
27	Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts. Fuel Processing Technology, 2018, 179, 143-153.	7.2	69
28	Catalytic features of CuZnZr–zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction. Catalysis Today, 2016, 277, 48-54.	4.4	68
29	Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps. Journal of Energy Chemistry, 2021, 58, 55-77.	12.9	67
30	Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported Hyflon® catalysts. Bioresource Technology, 2012, 118, 350-358.	9.6	63
31	Ceria–gadolinia supported NiCu catalyst: A suitable system for dry reforming of biogas to feed a solid oxide fuel cell (SOFC). Applied Catalysis B: Environmental, 2012, 121-122, 135-147.	20.2	60
32	Highly effective MnCeOx catalysts for biodiesel production by transesterification of vegetable oils with methanol. Applied Catalysis A: General, 2010, 382, 158-166.	4.3	57
33	Mixture of glycerol ethers as diesel bio-derivable oxy-fuel: Impact on combustion and emissions of an automotive engine combustion system. Applied Energy, 2014, 132, 236-247.	10.1	52
34	Efficient nickel-catalysed <i>N</i> -alkylation of amines with alcohols. Catalysis Science and Technology, 2018, 8, 5498-5505.	4.1	49
35	Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME. Catalysis Today, 2020, 345, 175-182.	4.4	47
36	A basic assessment of the reactivity of Ni catalysts in the decomposition of methane for the production of "COx-free―hydrogen for fuel cells application. Catalysis Today, 2006, 116, 298-303.	4.4	43

#	Article	IF	CITATIONS
37	H2 production by methane decomposition: Catalytic and technological aspects. International Journal of Hydrogen Energy, 2012, 37, 16367-16374.	7.1	41
38	New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites. Journal of Industrial and Engineering Chemistry, 2018, 68, 196-208.	5.8	41
39	Potential of Pervaporation and Vapor Separation with Water Selective Membranes for an Optimized Production of Biofuels—A Review. Catalysts, 2017, 7, 187.	3.5	40
40	The influence of different promoter oxides on the functionality of hybrid CuZn-ferrierite systems for the production of DME from CO 2 -H 2 mixtures. Applied Catalysis A: General, 2017, 544, 21-29.	4.3	39
41	Desilicated ZSM-5 zeolite: Catalytic performances assessment in methanol to DME dehydration. Microporous and Mesoporous Materials, 2020, 302, 110198.	4.4	37
42	Physico-chemical properties and reactivity of Au/CeO2 catalysts in total and selective oxidation of CO. Catalysis Today, 2006, 116, 384-390.	4.4	36
43	Methane decomposition over Co thin layer supported catalysts to produce hydrogen for fuel cell. International Journal of Hydrogen Energy, 2010, 35, 11568-11575.	7.1	36
44	Glycerol Etherification with TBA: High Yield to Poly-Ethers Using a Membrane Assisted Batch Reactor. Environmental Science & Technology, 2014, 48, 6019-6026.	10.0	36
45	Glycerol Ethers Production and Engine Performance with Diesel/Ethers Blend. Topics in Catalysis, 2013, 56, 378-383.	2.8	35
46	Development of an ammonia sensor based on silver nanoparticles in a poly-methacrylic acid matrix. Journal of Materials Chemistry C, 2014, 2, 5778.	5.5	35
47	A One-Step Synthesis of C6 Sugar Alcohols from Levoglucosan and Disaccharides Using a Ru/CMK-3 Catalyst. ACS Catalysis, 2016, 6, 4411-4422.	11.2	35
48	The role of Gadolinia Doped Ceria support on the promotion of CO2 methanation over Ni and Ni Fe catalysts. International Journal of Hydrogen Energy, 2017, 42, 26828-26842.	7.1	35
49	Inside the reaction mechanism of direct CO2 conversion to DME over zeolite-based hybrid catalysts. Applied Catalysis B: Environmental, 2021, 294, 120255.	20.2	34
50	Integrated synthesis of dimethylether via CO2 hydrogenation. Studies in Surface Science and Catalysis, 2004, 147, 385-390.	1.5	32
51	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	7.1	32
52	Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 2019, 80, 392-400.	5.8	30
53	Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach. Applied Catalysis B: Environmental, 2019, 246, 254-265.	20.2	30
54	Batch reactor coupled with water permselective membrane: Study of glycerol etherification reaction with butanol. Chemical Engineering Journal, 2015, 282, 187-193.	12.7	29

#	Article	IF	CITATIONS
55	Experimental Characterization of Diesel Combustion Using Glycerol Derived Ethers Mixtures. SAE International Journal of Fuels and Lubricants, 0, 6, 940-950.	0.2	28
56	In Situ FT-IR Characterization of CuZnZr/Ferrierite Hybrid Catalysts for One-Pot CO2-to-DME Conversion. Materials, 2018, 11, 2275.	2.9	28
57	Zeolite-assisted etherification of glycerol with butanol for biodiesel oxygenated additives production. Journal of Energy Chemistry, 2020, 48, 136-144.	12.9	28
58	Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catalysis Today, 2016, 277, 68-77.	4.4	27
59	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	3.5	24
60	How surface and textural properties affect the behaviour of Mn-based catalysts during transesterification reaction to produce biodiesel. Catalysis Today, 2012, 195, 32-43.	4.4	22
61	Hydrogen production by reforming of bio-alcohols. , 2015, , 109-136.		21
62	Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration. Applied Catalysis A: General, 2018, 566, 121-129.	4.3	21
63	Hydrotreatment of the carbohydrate-rich fraction of pyrolysis liquids using bimetallic Ni based catalyst: Catalyst activity and product property relations. Fuel Processing Technology, 2018, 169, 258-268.	7.2	18
64	Study of PtOx/TiO2 Photocatalysts in the Photocatalytic Reforming of Glycerol: The Role of Co-Catalyst Formation. Materials, 2018, 11, 1927.	2.9	18
65	Tailoring of Hydrotalcite-Derived Cu-Based Catalysts for CO2 Hydrogenation to Methanol. Catalysts, 2019, 9, 1058.	3.5	18
66	Methane production by sequential supercritical gasification of aqueous organic compounds and selective CO 2 methanation. Applied Catalysis A: General, 2017, 545, 24-32.	4.3	14
67	DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX). Applied Catalysis B: Environmental, 2022, 300, 120715.	20.2	14
68	Structure control on kinetics of copper reduction in Zr–containing mixed oxides during catalytic hydrogenation of carbon oxides to methanol. Catalysis Today, 2020, 342, 39-45.	4.4	13
69	Catalytic features of Ni/Ba–Ce0.9–Y0.1 catalyst to produce hydrogen for PCFCs by methane reforming. International Journal of Hydrogen Energy, 2010, 35, 11661-11668.	7.1	11
70	Techno-economic feasibility of industrial production of biofuels by glycerol etherification reaction with isobutene or tert-butyl alcohol assisted by vapor-permeation membrane. Journal of Industrial and Engineering Chemistry, 2021, 98, 413-424.	5.8	11
71	Stability of Metallic Ruthenium in Ru–Co Supported Silica Catalysts. Catalysis Letters, 2012, 142, 1452-1460.	2.6	10
72	Catalytic production of oxygenated additives by glycerol etherification. Open Chemistry, 2014, 12, 1248-1254.	1.9	10

#	Article	IF	CITATIONS
73	Factors affecting the efficiency of Nafion-based catalytic membranes in the selective oxidation of light paraffins mediated by the Fenton system. Catalysis Today, 2004, 91-92, 215-218.	4.4	9
74	Promoting Direct CO2 Conversion to DME over Zeolite-based Hybrid Catalysts. Petroleum Chemistry, 2020, 60, 508-515.	1.4	8
75	Dynamics of carbon formation during the catalytic hydrodeoxygenation of raw bio-oil. Sustainable Energy and Fuels, 2020, 4, 5503-5512.	4.9	8
76	Synthesis and physical-chemical characterization of nanocrystalline Ta modified TiO 2 as potential support of electrocatalysts for fuel cells and electrolyzers. International Journal of Hydrogen Energy, 2017, 42, 28011-28021.	7.1	5
77	Activity and stability of iron based catalysts in advanced fischer-tropsch technology via co2-rich syngas conversion. Studies in Surface Science and Catalysis, 2007, 167, 49-54.	1.5	3
78	Direct CO2-to-dimethyl Ether Hydrogenation over CuZnZr/zeolite Hybrid Catalyst: New Evidences on the Interaction Between Acid and Metal Sites. Annales De Chimie: Science Des Materiaux, 2019, 43, 141-149.	0.4	3
79	Diesel-fuel improver production via novel heterogenized solid-acid catalysts. Chemical Engineering Journal, 2010, 161, 409-415.	12.7	2
80	Effect of the Microstructure of the Semiconductor Support on the Photocatalytic Performance of the Pt-PtOx/TiO2 Catalyst System. Materials, 2021, 14, 943.	2.9	2
81	Copper and Iron Cooperation on Micro-Spherical Silica during Methanol Synthesis via CO2 Hydrogenation. Catalysts, 2022, 12, 603.	3.5	2
82	The Effect of Zeolite Features on Catalytic Performances of Cuznzr/Zeolite Hybrid Catalysts in One-pot CO2-to-DME Hydrogenation. Tecnica Italiana, 2019, 63, 257-262.	0.2	1
83	Analysis of citrus peels-based polygeneration plant for hydrogen, heat, power and DME production: energy and exergy analysis. E3S Web of Conferences, 2020, 197, 09001.	0.5	0
84	Supercritical water gasification of biomass to produce hydrogen. , 2017, , 147-183.		0
85	Catalysts for Biofuels Production. RSC Green Chemistry, 2018, , 144-180.	0.1	0