Dinghua Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3798191/publications.pdf Version: 2024-02-01

		331670	434195
32	1,341	21	31
papers	citations	h-index	g-index
32	32	32	1503
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Rhamnolipid Amidation on Biosurfactant Adsorption Loss and Oil-Washing Efficiency. Langmuir, 2022, 38, 2435-2444.	3.5	2
2	Acetoin modulates conformational change of surfactin: Interfacial assembly and crude oil-washing performance. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111602.	5.0	7
3	Surfactin-methylene blue complex under LED illumination for antibacterial photodynamic therapy: Enhanced methylene blue transcellular accumulation assisted by surfactin. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111974.	5.0	10
4	Near-Infrared-Fluorescent Probe for Turn-On Lipopolysaccharide Analysis Based on PEG-Modified Gold Nanorods with Plasmon-Enhanced Fluorescence. ACS Applied Materials & Interfaces, 2021, 13, 57058-57066.	8.0	11
5	Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Advances, 2020, 10, 7206-7213.	3.6	49
6	Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 2019, 9, 35532-35538.	3.6	10
7	Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Materials Science and Engineering C, 2019, 96, 356-364.	7.3	61
8	Microencapsulated sunblock nanoparticles based on zeolitic imidazole frameworks for safe and effective UV protection. RSC Advances, 2018, 8, 12315-12321.	3.6	7
9	Synthesis and characterization of polyurethane rigid foams from polyether polyols with isosorbide as the bio-based starting agent. Journal of Polymer Research, 2018, 25, 1.	2.4	15
10	Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. International Journal of Biological Macromolecules, 2018, 119, 624-632.	7.5	56
11	Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups. Colloids and Surfaces B: Biointerfaces, 2017, 160, 416-422.	5.0	29
12	Catalytic dehydration of 2,3-butanediol over P/HZSM-5: effect of catalyst, reaction temperature and reactant configuration on rearrangement products. RSC Advances, 2016, 6, 16988-16995.	3.6	23
13	The effect of P/Ta ratio on sorbitol dehydration over modified tantalum oxide by phosphoric acid. Catalysis Communications, 2014, 43, 29-33.	3.3	26
14	Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. Journal of Colloid and Interface Science, 2014, 417, 210-216.	9.4	53
15	Effective synthesis of cis-3-hexen-1-yl acetate via transesterification over KOH/Î ³ -Al2O3: Structure and catalytic performance. Applied Catalysis A: General, 2013, 455, 1-7.	4.3	17
16	Immobilization of <l>Burkholderia Cepacia</l> Lipase on Functionalized Ionic Liquids Modified Mesoporous Silica SBA-15. Chinese Journal of Catalysis, 2013, 33, 1565-1571.	14.0	0
17	Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green Chemistry, 2012, 14, 3441.	9.0	92
18	Sulfated copper oxide: An efficient catalyst for dehydration of sorbitol to isosorbide. Catalysis Communications, 2011, 12, 544-547.	3.3	84

Dinghua Yu

#	Article	IF	CITATIONS
19	Alkaline Earth Metal Modified NaY for Lactic Acid Dehydration to Acrylic Acid: Effect of Basic Sites on the Catalytic Performance. Chinese Journal of Catalysis, 2011, 32, 405-411.	14.0	57
20	Functionalized ionic liquid modified mesoporous silica SBA-15: A novel, designable and efficient carrier for porcine pancreas lipase. Colloids and Surfaces B: Biointerfaces, 2011, 88, 93-99.	5.0	45
21	Modification of N <scp>A</scp> Y by L <scp>A</scp> 3+ for the dehydration of lactic acid: The effect of preparation protocol on catalyst microstructure and catalytic performance. Canadian Journal of Chemical Engineering, 2011, 89, 484-490.	1.7	20
22	Selective dehydration of bioâ€ethanol to ethylene catalyzed by lanthanumâ€phosphorousâ€modified HZSMâ€5: Influence of the fusel. Biotechnology Journal, 2010, 5, 1186-1191.	3.5	28
23	Assembly of NaTaO3 porous microspheres via imperfect oriented attachment mechanism. Solid State Sciences, 2010, 12, 232-237.	3.2	7
24	Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochemical Engineering Journal, 2010, 53, 150-153.	3.6	80
25	Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts. Carbon, 2010, 48, 4547-4555.	10.3	60
26	NaY zeolites modified by La3+ and Ba2+: the effect of synthesis details on surface structure and catalytic performance for lactic acid to acrylic acid. Journal of Rare Earths, 2010, 28, 803-806.	4.8	41
27	NaY Zeolites Catalyze Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts. Industrial & Engineering Chemistry Research, 2010, 49, 9082-9087.	3.7	85
28	Lanthanum–phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis. Catalysis Communications, 2010, 11, 633-637.	3.3	84
29	Temperature-induced solid-phase oriented rearrangement route to the fabrication of NaNbO3nanowires. Chemical Communications, 2010, 46, 427-429.	4.1	29
30	Metal (IV) Phosphates as Solid Catalysts for Selective Dehydration of Sorbitol to Isosorbide. Catalysis Letters, 2009, 133, 214-220.	2.6	75
31	Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid. Catalysis Communications, 2009, 10, 1345-1349.	3.3	90
32	Rare earth metal modified NaY: Structure and catalytic performance for lactic acid dehydration to acrylic acid. Catalysis Communications, 2008, 9, 1799-1803.	3.3	88