
Zuzana Justinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids. Neuropsychopharmacology, 2007, 32, 2249-2259.	5.4	229
2	Self-administration of ?9-tetrahydrocannabinol (THC) by drug naive squirrel monkeys. Psychopharmacology, 2003, 169, 135-140.	3.1	202
3	Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. Journal of Neurochemistry, 2006, 98, 408-419.	3.9	196
4	Involvement of Adenosine A1 and A2A Receptors in the Motor Effects of Caffeine after its Acute and Chronic Administration. Neuropsychopharmacology, 2003, 28, 1281-1291.	5.4	177
5	Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55, 190-197.	4.1	157
6	Fatty Acid Amide Hydrolase Inhibition Heightens Anandamide Signaling Without Producing Reinforcing Effects in Primates. Biological Psychiatry, 2008, 64, 930-937.	1.3	151
7	Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Frontiers in Bioscience - Landmark, 2008, 13, 2391.	3.0	135
8	Inhibition of Anandamide Hydrolysis by Cyclohexyl Carbamic Acid 3′-Carbamoyl-3-yl Ester (URB597) Reverses Abuse-Related Behavioral and Neurochemical Effects of Nicotine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 482-490.	2.5	132
9	Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat. PLoS ONE, 2010, 5, e8790.	2.5	119
10	Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nature Protocols, 2006, 1, 1194-1206.	12.0	116
11	CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiology of Disease, 2013, 58, 132-143.	4.4	115
12	Adenosine–cannabinoid receptor interactions. Implications for striatal function. British Journal of Pharmacology, 2010, 160, 443-453.	5.4	113
13	Blockade of Nicotine Reward and Reinstatement by Activation of Alpha-Type Peroxisome Proliferator-Activated Receptors. Biological Psychiatry, 2011, 69, 633-641.	1.3	112
14	Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacology Biochemistry and Behavior, 2005, 81, 285-299.	2.9	110
15	The Endogenous Cannabinoid Anandamide Produces δ-9-Tetrahydrocannabinol-Like Discriminative and Neurochemical Effects That Are Enhanced by Inhibition of Fatty Acid Amide Hydrolase but Not by Inhibition of Anandamide Transport. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 370-380.	2.5	103
16	Inhibition of FAAH and activation of PPAR: New approaches to the treatment of cognitive dysfunction and drug addiction. , 2013, 138, 84-102.		101
17	The opioid antagonist naltrexone reduces the reinforcing effects of ? 9 -tetrahydrocannabinol (THC) in squirrel monkeys. Psychopharmacology, 2004, 173, 186-194.	3.1	100
18	The Endogenous Cannabinoid Anandamide and Its Synthetic Analog R(+)-Methanandamide Are	3.6	91

ZUZANA JUSTINOVA

#	Article	IF	CITATIONS
19	Histamine H3 Receptor Antagonists Potentiate Methamphetamine Self-Administration and Methamphetamine-Induced Accumbal Dopamine Release. Neuropsychopharmacology, 2004, 29, 705-717.	5.4	86
20	Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nature Neuroscience, 2013, 16, 1652-1661.	14.8	85
21	Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse. Neuropsychopharmacology, 2015, 40, 2185-2197.	5.4	82
22	Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology, 2016, 233, 1945-1962.	3.1	79
23	Blockade of THC-Seeking Behavior and Relapse in Monkeys by the Cannabinoid CB1-Receptor Antagonist Rimonabant. Neuropsychopharmacology, 2008, 33, 2870-2877.	5.4	77
24	Regulation of σ-1 Receptors and Endoplasmic Reticulum Chaperones in the Brain of Methamphetamine Self-Administering Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 1054-1063.	2.5	77
25	Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings. Neuropsychopharmacology, 2012, 37, 1838-1847.	5.4	75
26	Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology, 2013, 67, 476-484.	4.1	64
27	Cannabinoid abuse and addiction: Clinical and preclinical findings. Clinical Pharmacology and Therapeutics, 2015, 97, 616-627.	4.7	63
28	Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology, 2004, 175, 68-75.	3.1	62
29	Involvement of Adenosine A1 and A2A Receptors in the Adenosinergic Modulation of the Discriminative-Stimulus Effects of Cocaine and Methamphetamine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 977-986.	2.5	57
30	The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotineâ€induced dopamine elevations in the nucleus accumbens shell in rats. British Journal of Pharmacology, 2012, 165, 2539-2548.	5.4	56
31	Blockade of Dopamine D4 Receptors Attenuates Reinstatement of Extinguished Nicotine-Seeking Behavior in Rats. Neuropsychopharmacology, 2012, 37, 685-696.	5.4	54
32	Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology, 2016, 41, 2283-2293.	5.4	54
33	The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys. Journal of Neuroscience, 2011, 31, 7043-7048.	3.6	53
34	The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys. Biological Psychiatry, 2015, 78, 452-462.	1.3	52
35	Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addiction Biology, 2011, 16, 405-415.	2.6	50
36	Animal models of cannabinoid reward. British Journal of Pharmacology, 2010, 160, 499-510.	5.4	46

ZUZANA JUSTINOVA

#	Article	IF	CITATIONS
37	Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology, 2005, 179, 576-586.	3.1	41
38	Effect of Novel Allosteric Modulators of Metabotropic Glutamate Receptors on Drug Self-administration and Relapse: A Review of Preclinical Studies and Their Clinical Implications. Biological Psychiatry, 2018, 84, 180-192.	1.3	41
39	Methamphetamine Accelerates Cellular Senescence through Stimulation of De Novo Ceramide Biosynthesis. PLoS ONE, 2015, 10, e0116961.	2.5	39
40	Differential Effects of Presynaptic versus Postsynaptic Adenosine A2A Receptor Blockade on Â9-Tetrahydrocannabinol (THC) Self-Administration in Squirrel Monkeys. Journal of Neuroscience, 2014, 34, 6480-6484.	3.6	35
41	Synthetic cannabinoids found in "spice―products alter body temperature and cardiovascular parameters in conscious male rats. Drug and Alcohol Dependence, 2017, 179, 387-394.	3.2	34
42	Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats. Psychopharmacology, 2002, 161, 348-355.	3.1	33
43	Anandamide-induced behavioral disruption through a vanilloid-dependent mechanism in rats. Psychopharmacology, 2009, 203, 529-538.	3.1	32
44	Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. International Journal of Neuropsychopharmacology, 2017, 20, pyw102.	2.1	32
45	Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology, 2009, 203, 355-367.	3.1	31
46	Drug Addiction. Current Topics in Behavioral Neurosciences, 2009, 1, 309-346.	1.7	31
47	Preclinical Studies of Cannabinoid Reward, Treatments for Cannabis Use Disorder, and Addiction-Related Effects of Cannabinoid Exposure. Neuropsychopharmacology, 2018, 43, 116-141.	5.4	30
48	Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. Psychopharmacology, 2016, 233, 1879-1888.	3.1	29
49	Differential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on nicotine versus cocaine self-administration and relapse in squirrel monkeys. Psychopharmacology, 2016, 233, 1791-1800.	3.1	29
50	Modification of pharmacokinetic and abuseâ€related effects of cocaine by humanâ€derived cocaine hydrolase in monkeys. Addiction Biology, 2013, 18, 30-39.	2.6	27
51	Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys. Neuropsychopharmacology, 2017, 42, 1619-1629.	5.4	27
52	Differential involvement of 5-HT2A receptors in the discriminative-stimulus effects of cocaine and methamphetamine. European Journal of Pharmacology, 2002, 436, 75-82.	3.5	26
53	Astrocytic Mechanisms Involving Kynurenic Acid Control Δ9-Tetrahydrocannabinol-Induced Increases in Glutamate Release in Brain Reward-Processing Areas. Molecular Neurobiology, 2019, 56, 3563-3575.	4.0	20
54	Effects of cannabinoid receptor antagonists on maintenance and reinstatement of methamphetamine self-administration in rhesus monkeys. European Journal of Pharmacology, 2010, 633, 44-49.	3.5	19

ZUZANA JUSTINOVA

#	Article	IF	CITATIONS
55	Self-administration of the anandamide transport inhibitor AM404 by squirrel monkeys. Psychopharmacology, 2016, 233, 1867-1877.	3.1	19
56	Metabolic Transformation Plays a Primary Role in the Psychostimulant-Like Discriminative-Stimulus Effects of Selegiline [(R)-(–)-Deprenyl]. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 387-394.	2.5	14
57	Screening Medications for the Treatment of Cannabis Use Disorder. International Review of Neurobiology, 2016, 126, 87-120.	2.0	13
58	A comparison of drug-seeking behavior maintained by d-amphetamine, l-deprenyl (selegiline), and d-deprenyl under a second-order schedule in squirrel monkeys. Psychopharmacology, 2006, 183, 413-421.	3.1	12
59	Topiramate does not alter nicotine or cocaine discrimination in rats. Behavioural Pharmacology, 2008, 19, 13-20.	1.7	11
60	Discriminative stimulus and reinforcing effects of p-fluoro-l-deprenyl in monkeys. Psychopharmacology, 2005, 182, 95-103.	3.1	6
61	The FAAH inhibitor PFâ€04457845 has THCâ€like rewarding and reinstatement effects in squirrel monkeys and increases dopamine levels in the nucleus accumbens shell in rats (838.6). FASEB Journal, 2014, 28, 838.6.	0.5	3
62	Cannabinoid-Nicotine Interactions. , 2015, , 329-361.		2
63	Animal Models of Cannabis Use Disorder. , 2019, , 63-74.		2
64	Lack of abuse liability of the FAAH inhibitor URB597 in squirrel monkeys. FASEB Journal, 2007, 21, .	0.5	1
65	Animal Models of Addiction. , 2013, , 69-78.		0
66	Potential Use of Opioid Antagonists in the Treatment of Marijuana Abuse and Dependence. , 2009, , 299-314.		0