Justin L Mott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3797558/publications.pdf

Version: 2024-02-01

147801 144013 4,401 61 31 57 h-index citations g-index papers 61 61 61 6926 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glycosylation of FGFR4 in cholangiocarcinoma regulates receptor processing and cancer signaling. Journal of Cellular Biochemistry, 2022, 123, 568-580.	2.6	3
2	Presentation of Preclinical Gastrointestinal Anatomy via Laparoscopic Simulation. Clinical Anatomy, 2022, , .	2.7	1
3	Saturated free fatty acids induce placental trophoblast lipoapoptosis. PLoS ONE, 2021, 16, e0249907.	2.5	10
4	Epigenetics, Noncoding RNAs, and Gene Expression. , 2021, , 258-272.		1
5	miR-106b-responsive gene landscape identifies regulation of Kruppel-like factor family. RNA Biology, 2018, 15, 391-403.	3.1	7
6	Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Theranostics, 2018, 8, 4305-4320.	10.0	33
7	FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. Journal of Lipid Research, 2017, 58, 866-875.	4.2	35
8	Regulation of miR-29b-1/a transcription and identification of target mRNAs in CHO-K1 cells. Molecular and Cellular Endocrinology, 2017, 444, 38-47.	3.2	8
9	Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. Journal of Cellular Biochemistry, 2017, 118, 1678-1688.	2.6	28
10	Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Letters, 2017, 388, 230-238.	7.2	39
11	Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic Liver Disease. Current Molecular Pharmacology, 2017, 10, 237-248.	1.5	19
12	Lipotoxicity in Non-parenchymal Liver Cells. , 2017, , 1-21.		0
13	Ceramide Induces Human Hepcidin Gene Transcription through JAK/STAT3 Pathway. PLoS ONE, 2016, 11, e0147474.	2.5	16
14	Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. American Journal of Physiology - Renal Physiology, 2016, 310, G930-G940.	3.4	28
15	Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness. Molecular Pharmaceutics, 2016, 13, 1073-1080.	4.6	25
16	Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules, 2015, 5, 3309-3338.	4.0	44
17	Saturated Fatty Acids Induce Post-transcriptional Regulation of HAMP mRNA via AU-rich Element-binding Protein, Human Antigen R (HuR). Journal of Biological Chemistry, 2015, 290, 24178-24189.	3.4	19
18	Overview of MicroRNA Biology. Seminars in Liver Disease, 2015, 35, 003-011.	3.6	835

#	Article	IF	CITATIONS
19	XIAP Antagonist Embelin Inhibited Proliferation of Cholangiocarcinoma Cells. PLoS ONE, 2014, 9, e90238.	2.5	11
20	Saturated free fatty acids induce cholangiocyte lipoapoptosis. Hepatology, 2014, 60, 1942-1956.	7.3	48
21	Mmu-miR-615-3p Regulates Lipoapoptosis by Inhibiting C/EBP Homologous Protein. PLoS ONE, 2014, 9, e109637.	2.5	30
22	Apoptosis and Necrosis in the Liver. , 2013, 3, 977-1010.		280
23	MicroRNA Function in Human Diseases. Medical Epigenetics, 2013, 1, 106-115.	262.3	16
24	Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. American Journal of Physiology - Renal Physiology, 2012, 302, G77-G84.	3.4	171
25	miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology, 2012, 55, 465-475.	7.3	172
26	Death Receptor 5 Signaling Promotes Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2011, 286, 39336-39348.	3.4	106
27	Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Experimental Cell Research, 2011, 317, 107-116.	2.6	36
28	Myofibroblast-derived PDGF-BB promotes hedgehog survival signaling in cholangiocarcinoma cells. Hepatology, 2011, 54, 2076-2088.	7.3	134
29	A role for miR-296 in the regulation of lipoapoptosis by targeting PUMA. Journal of Lipid Research, 2011, 52, 1517-1525.	4.2	72
30	Hedgehog Inhibition Promotes a Switch from Type II to Type I Cell Death Receptor Signaling in Cancer Cells. PLoS ONE, 2011, 6, e18330.	2.5	27
31	A smac mimetic reduces TNF Related Apoptosis Inducing Ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology, 2010, 52, 550-561.	7.3	57
32	Transcriptional suppression of mirâ€29bâ€1/mirâ€29a promoter by câ€Myc, hedgehog, and NFâ€kappaB. Journal Cellular Biochemistry, 2010, 110, 1155-1164.	of 2.6	236
33	CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. American Journal of Physiology - Renal Physiology, 2010, 299, G236-G243.	3.4	164
34	Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. Journal of Hepatology, 2010, 52, 586-593.	3.7	211
35	Noxa mediates hepatic stellate cell apoptosis by proteasome inhibition. Hepatology Research, 2010, 40, 701-710.	3.4	7
36	MBP-1 Upregulates miR-29b, Which Represses Mcl-1, Collagens, and Matrix Metalloproteinase-2 in Prostate Cancer Cells. Genes and Cancer, 2010, 1, 381-387.	1.9	113

#	Article	IF	Citations
37	Selective mtDNA mutation accumulation results in \hat{l}^2 -cell apoptosis and diabetes development. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E672-E680.	3.5	19
38	JNK1-dependent PUMA Expression Contributes to Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2009, 284, 26591-26602.	3.4	174
39	Mcl-1 Degradation during Hepatocyte Lipoapoptosis. Journal of Biological Chemistry, 2009, 284, 30039-30048.	3.4	37
40	MicroRNAs involved in tumor suppressor and oncogene pathways: Implications for hepatobiliary neoplasia. Hepatology, 2009, 50, 630-637.	7.3	88
41	Overexpression of Mcl-1 Attenuates Liver Injury and Fibrosis in the Bile Duct–Ligated Mouse. Digestive Diseases and Sciences, 2009, 54, 1908-1917.	2.3	12
42	MicroRNAs: Key Modulators of Posttranscriptional Gene Expression. Gastroenterology, 2009, 136, 17-25.	1.3	95
43	Death Receptor 5 Internalization Is Required for Lysosomal Permeabilization by TRAIL in Malignant Liver Cell Lines. Gastroenterology, 2009, 136, 2365-2376.e7.	1.3	68
44	Matrix metalloproteinase inhibitor, CTSâ€1027, attenuates liver injury and fibrosis in the bile ductâ€ligated mouse. Hepatology Research, 2009, 39, 805-813.	3.4	25
45	TRAIL mediates liver injury by the innate immune system in the bile duct-ligated mouse. Hepatology, 2008, 47, 1317-1330.	7.3	82
46	BH3-only protein mimetic obatoclax sensitizes cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2339-2347.	4.1	38
47	Serine 64 Phosphorylation Enhances the Antiapoptotic Function of Mcl-1. Journal of Biological Chemistry, 2007, 282, 18407-18417.	3.4	94
48	Targeting IL-6 in Cholangiocarcinoma Therapy. American Journal of Gastroenterology, 2007, 102, 2171-2172.	0.4	17
49	Predisposed to toxins: Association of gallbladder cancer with N-acetyl transferase SNPs. Cancer Biology and Therapy, 2007, 6, 97-98.	3.4	2
50	Sustained IL-6/STAT-3 Signaling in Cholangiocarcinoma Cells Due to SOCS-3 Epigenetic Silencing. Gastroenterology, 2007, 132, 384-396.	1.3	196
51	Piercing the armor of hepatobiliary cancer: Bcl-2 homology domain 3 (BH3) mimetics and cell death. Hepatology, 2007, 46, 906-911.	7.3	38
52	Mitochondrial DNA mutations cause resistance to opening of the permeability transition pore. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 596-603.	1.0	10
53	Proteasome inhibition attenuates hepatic injury in the bile duct-ligated mouse. American Journal of Physiology - Renal Physiology, 2006, 291, G709-G716.	3.4	27
54	Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2476-H2483.	3.2	47

#	ARTICLE	IF	CITATION
55	Mitochondrial DNA Mutations, Apoptosis, and the Misfolded Protein Response. Rejuvenation Research, 2005, 8, 216-226.	1.8	14
56	Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovascular Research, 2003, 57, 147-157.	3.8	105
57	Chronic Apoptotic Signaling is Induced by Low Levels of Mitochondrial Dna Mutations in the Mouse Heart. Scientific World Journal, The, 2001, 1, 59-59.	2.1	0
58	Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 474, 35-45.	1.0	45
59	Construction of Transgenic Mice with Tissue-Specific Acceleration of Mitochondrial DNA Mutagenesis. Genomics, 2000, 69, 151-161.	2.9	123
60	Genomic Structure of Murine Mitochondrial DNA Polymerase-Î ³ . DNA and Cell Biology, 2000, 19, 601-605.	1.9	1
61	Anatomical distribution of glycoprotein 93 (gp93) on nerve fibers during rat brain development Cell and Tissue Research, 1999, 297, 67-79.	2.9	2