John D Hayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3797480/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ο ΗΛΥΕς

#	Article	IF	CITATIONS
1	GLUTATHIONE TRANSFERASES. Annual Review of Pharmacology and Toxicology, 2005, 45, 51-88.	9.4	3,104
2	The Glut athione S-Transferase Supergene Family: Regulation of GST and the Contribution of the lsoenzymes to Cancer Chemoprotection and Drug Resistance Part I. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30, 445-520.	5.2	3,080
3	The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences, 2014, 39, 199-218.	7.5	1,591
4	Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 1999, 31, 273-300.	3.3	1,276
5	Oxidative Stress in Cancer. Cancer Cell, 2020, 38, 167-197.	16.8	1,203
6	p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription. Journal of Biological Chemistry, 2010, 285, 22576-22591.	3.4	1,158
7	Keap1-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression. Journal of Biological Chemistry, 2003, 278, 21592-21600.	3.4	963
8	Glutathione S-Transferase Polymorphisms and Their Biological Consequences. Pharmacology, 2000, 61, 154-166.	2.2	863
9	Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Reviews Drug Discovery, 2019, 18, 295-317.	46.4	849
10	NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends in Biochemical Sciences, 2009, 34, 176-188.	7.5	764
11	Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 2015, 88, 108-146.	2.9	661
12	SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Molecular and Cellular Biology, 2011, 31, 1121-1133.	2.3	647
13	Nrf2 is controlled by two distinct \hat{l}^2 -TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene, 2013, 32, 3765-3781.	5.9	500
14	Cancer Chemoprevention Mechanisms Mediated Through the Keap1–Nrf2 Pathway. Antioxidants and Redox Signaling, 2010, 13, 1713-1748.	5.4	476
15	Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochemical Journal, 2003, 374, 337-348.	3.7	427
16	Dimerization of Substrate Adaptors Can Facilitate Cullin-mediated Ubiquitylation of Proteins by a "Tethering―Mechanism. Journal of Biological Chemistry, 2006, 281, 24756-24768.	3.4	422
17	Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochemical Journal, 2002, 365, 405-416.	3.7	399
18	Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18838-18843.	7.1	368

#	Article	IF	CITATIONS
19	Invited Commentary Potential Contribution of the Glutathione S-Transferase Supergene Family to Resistance to Oxidative Stress. Free Radical Research, 1995, 22, 193-207.	3.3	341
20	The cancer chemopreventive actions of phytochemicals derived from glucosinolates. European Journal of Nutrition, 2008, 47, 73-88.	3.9	340
21	Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis. Molecular and Cellular Biology, 2012, 32, 3486-3499.	2.3	338
22	Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron. Journal of Biological Chemistry, 2004, 279, 31556-31567.	3.4	336
23	Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2004. 555. 149-171.	1.0	318
24	Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Letters, 2001, 174, 103-113.	7.2	302
25	Nrf1 and Nrf2 Play Distinct Roles in Activation of Antioxidant Response Element-dependent Genes. Journal of Biological Chemistry, 2008, 283, 33554-33562.	3.4	275
26	Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis, 2009, 30, 1571-1580.	2.8	273
27	Generation of a Stable Antioxidant Response Element–Driven Reporter Gene Cell Line and Its Use to Show Redox-Dependent Activation of Nrf2 by Cancer Chemotherapeutic Agents. Cancer Research, 2006, 66, 10983-10994.	0.9	269
28	RXRα Inhibits the NRF2-ARE Signaling Pathway through a Direct Interaction with the Neh7 Domain of NRF2. Cancer Research, 2013, 73, 3097-3108.	0.9	269
29	Nomenclature for Mammalian Soluble Glutathione Transferases. Methods in Enzymology, 2005, 401, 1-8.	1.0	263
30	ldentification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19589-19594.	7.1	255
31	Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis, 1991, 12, 1533-1537.	2.8	254
32	Glutathione S-transferase and glutathione peroxidase expression in normal and tumour human tissues. Carcinogenesis, 1990, 11, 451-458.	2.8	237
33	Glutathione S-Transferases: Biomedical Applications. Advances in Clinical Chemistry, 1993, 30, 281-380.	3.7	229
34	Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 2010, 48, 357-371.	2.9	227
35	Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. Carcinogenesis, 1988, 9, 1283-1287.	2.8	207
36	Nrf2, a Guardian of Healthspan and Gatekeeper of Species Longevity. Integrative and Comparative Biology, 2010, 50, 829-843.	2.0	200

#	Article	IF	CITATIONS
37	The Gasotransmitter Hydrogen Sulfide Induces Nrf2-Target Genes by Inactivating the Keap1 Ubiquitin Ligase Substrate Adaptor Through Formation of a Disulfide Bond Between Cys-226 and Cys-613. Antioxidants and Redox Signaling, 2013, 19, 465-481.	5.4	189
38	Activation of hepatic Nrf2in vivo by acetaminophen in CD-1 mice. Hepatology, 2004, 39, 1267-1276.	7.3	188
39	Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Archives of Biochemistry and Biophysics, 2005, 433, 342-350.	3.0	187
40	Susceptibility of Nrf2-Null Mice to Steatohepatitis and Cirrhosis upon Consumption of a High-Fat Diet Is Associated with Oxidative Stress, Perturbation of the Unfolded Protein Response, and Disturbance in the Expression of Metabolic Enzymes but Not with Insulin Resistance. Molecular and Cellular Biology, 2014, 34, 3305-3320.	2.3	187
41	Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochemical Journal, 1999, 343, 487-504.	3.7	183
42	Transcription Factor Nrf2 Is Essential for Induction of NAD(P)H:Quinone Oxidoreductase 1, Glutathione S-Transferases, and Glutamate Cysteine Ligase by Broccoli Seeds and Isothiocyanates. Journal of Nutrition, 2004, 134, 3499S-3506S.	2.9	181
43	Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metabolism Reviews, 2011, 43, 92-137.	3.6	178
44	Induction of Phase I and Phase II Drug-Metabolizing Enzyme mRNA, Protein, and Activity by BHA, Ethoxyquin, and Oltipraz. Toxicology and Applied Pharmacology, 1995, 135, 45-57.	2.8	177
45	Expression and polymorphism of glutathione <i>S</i> -transferase in human lungs: risk factors in smoking-related lung cancer. Carcinogenesis, 1995, 16, 707-711.	2.8	169
46	Hyperglycemia is a marker for poor outcome in the postoperative pediatric cardiac patient*. Pediatric Critical Care Medicine, 2006, 7, 351-355.	0.5	162
47	Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis AreÂAmeliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2). Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 367-398.	4.5	154
48	Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents. Toxicology and Applied Pharmacology, 2009, 237, 267-280.	2.8	152
49	Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. Journal of Proteomics, 2010, 73, 1612-1631.	2.4	144
50	Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nature Communications, 2015, 6, 7066.	12.8	144
51	Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochemical Society Transactions, 2015, 43, 611-620.	3.4	143
52	Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse: Comparison of the tissue distribution of GST T1-1 with that of classes Alpha, Mu and Pi GST in human. Biochemical Journal, 1997, 326, 837-846.	3.7	140
53	The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochemical Society Transactions, 2015, 43, 687-689.	3.4	139
54	Reduction in Antioxidant Defenses may Contribute to Ochratoxin A Toxicity and Carcinogenicity. Toxicological Sciences, 2006, 96, 30-39.	3.1	130

#	Article	IF	CITATIONS
55	The Double-Edged Sword of Nrf2: Subversion of Redox Homeostasis during the Evolution of Cancer. Molecular Cell, 2006, 21, 732-734.	9.7	126
56	Peptide inhibitors of the Keap1–Nrf2 protein–protein interaction. Free Radical Biology and Medicine, 2012, 52, 444-451.	2.9	126
57	Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1-2; author reply E3-4.	7.1	123
58	Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7280-7285.	7.1	118
59	The Glut athione S-Transferase Supergene Family: Regulation of GST and the Contribution of the Isoenzymes to Cancer Chemoprotection and Drug Resistance Part II. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30, 521-600.	5.2	116
60	The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system. Hepatology, 2008, 48, 1292-1301.	7.3	116
61	Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3Hâ€1,2â€dithioleâ€3â€thione. Journal of Neurochemistry, 2008, 107, 533-543.	3.9	115
62	Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochemical Journal, 2006, 399, 373-385.	3.7	112
63	Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicology and Applied Pharmacology, 2008, 226, 328-337.	2.8	112
64	Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. , 1991, 50, 443-472.		109
65	Antioxidant and cytoprotective responses to redox stress. Biochemical Society Symposia, 2004, 71, 157-176.	2.7	98
66	Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochemical Journal, 2001, 359, 507-516.	3.7	96
67	The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochemical Journal, 2007, 408, 161-172.	3.7	94
68	Activation of the NRF2 Signaling Pathway by Copper-Mediated Redox Cycling of Para- and Ortho-Hydroquinones. Chemistry and Biology, 2010, 17, 75-85.	6.0	94
69	Cross-talk between Transcription Factors AhR and Nrf2: Lessons for Cancer Chemoprevention from Dioxin. Toxicological Sciences, 2009, 111, 199-201.	3.1	90
70	Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochemical Journal, 1999, 343, 487.	3.7	85
71	Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: Mechanisms of inducible resistance to aflatoxin B1. Chemico-Biological Interactions, 1998, 111-112, 51-67.	4.0	83
72	Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo–keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase. Biochemical Journal, 1998, 332, 21-34.	3.7	83

#	Article	IF	CITATIONS
73	Expression of glutathione S-transferases and cytochrome P450 in normal and tumor breast tissue. Carcinogenesis, 1990, 11, 2163-2170.	2.8	80
74	Conjugation of Highly Reactive Aflatoxin B1exo-8,9-Epoxide Catalyzed by Rat and Human Glutathione Transferases: Estimation of Kinetic Parametersâ€. Biochemistry, 1997, 36, 3056-3060.	2.5	79
75	Increased bioactivation of dihaloalkanes in rat liver due to induction of class Theta glutathione S-transferase T1-1. Biochemical Journal, 1998, 335, 619-630.	3.7	78
76	Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death and Differentiation, 2012, 19, 779-787.	11.2	76
77	A partnership with the proteasome; the destructive nature of CSK3. Biochemical Pharmacology, 2018, 147, 77-92.	4.4	76
78	Glutathione S-transferase isoenzymes and glutathione peroxidase activity in normal and tumour samples from human lung. Carcinogenesis, 1988, 9, 1617-1621.	2.8	75
79	Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D2 synthase, a novel class Sigma glutathione S-transferase. Biochemical Journal, 1998, 333, 317-325.	3.7	74
80	Deficiency of Glutathione Transferase Zeta Causes Oxidative Stress and Activation of Antioxidant Response Pathways. Molecular Pharmacology, 2006, 69, 650-657.	2.3	74
81	Glutathione S-transferases. , 2002, , 319-352.		73
82	The Nrf1 CNC/bZIP protein is a nuclear envelope-bound transcription factor that is activated by t-butyl hydroquinone but not by endoplasmic reticulum stressors. Biochemical Journal, 2009, 418, 293-310.	3.7	69
83	Transcription Factor Nrf1 Negatively Regulates the Cystine/Glutamate Transporter and Lipid-Metabolizing Enzymes. Molecular and Cellular Biology, 2014, 34, 3800-3816.	2.3	68
84	Glutathione S-transferase isoenzymes in human tumours and tumour derived cell lines. British Journal of Cancer, 1989, 60, 327-331.	6.4	65
85	The Nrf3 Transcription Factor Is a Membrane-bound Glycoprotein Targeted to the Endoplasmic Reticulum through Its N-terminal Homology Box 1 Sequence. Journal of Biological Chemistry, 2009, 284, 3195-3210.	3.4	65
86	Reduction of Aflatoxin B1 Dialdehyde by Rat and Human Aldo-keto Reductases. Chemical Research in Toxicology, 2001, 14, 727-737.	3.3	64
87	Expression of the Aflatoxin B1-8,9-Epoxide-Metabolizing Murine Glutathione S-Transferase A3 Subunit Is Regulated by the Nrf2 Transcription Factor through an Antioxidant Response Element. Molecular Pharmacology, 2003, 64, 1018-1028.	2.3	62
88	Biochemical and genetic characterization of a murine class Kappa glutathione S-transferase. Biochemical Journal, 2003, 373, 559-569.	3.7	61
89	Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochemical Journal, 2001, 359, 507.	3.7	60
90	Phosphoinositide 3-Kinases Upregulate System x _c ^{â^'} <i>via</i> Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Clioblastomas and Epilepsy. Antioxidants and Redox Signaling, 2014, 20, 2907-2922.	5.4	58

John D Hayes

#	Article	IF	CITATIONS
91	Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Research, 2001, 916, 229-238.	2.2	56
92	Variations in the glutathione S-transferase subunits expressed in human livers. BBA - Proteins and Proteomics, 1986, 874, 1-12.	2.1	53
93	Enhanced expression of glutathione S-transferases in colorectal carcinoma compared to non-neoplastic mucosa. Carcinogenesis, 1991, 12, 13-17.	2.8	52
94	Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochemical Journal, 2010, 430, 497-510.	3.7	52
95	Allelism at the glutathione S-transferase GSTM3 locus: interactions with GSTM1 and GSTT1 as risk factors for astrocytoma. Carcinogenesis, 1996, 17, 1919-1922.	2.8	50
96	Nrf2 Orchestrates Fuel Partitioning for Cell Proliferation. Cell Metabolism, 2012, 16, 139-141.	16.2	49
97	Transcription Factor Nrf1 Is Topologically Repartitioned across Membranes to Enable Target Gene Transactivation through Its Acidic Glucose-Responsive Domains. PLoS ONE, 2014, 9, e93458.	2.5	49
98	The polymorphic expression of neutral glutathione S-transferase in human mononuclear leucocytes as measured by specific radioimmunoassay. Biochemical Pharmacology, 1987, 36, 4013-4015.	4.4	48
99	The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Scientific Reports, 2015, 5, 12983.	3.3	48
100	Plasma Glutathione S-Transferase Measurements and Liver Disease in Man. Journal of Clinical Biochemistry and Nutrition, 1987, 2, 1-24.	1.4	47
101	Direct Comparison of the Nature of Mouse and Human GST T1-1 and the Implications on Dichloromethane Carcinogenicity. Toxicology and Applied Pharmacology, 2002, 179, 89-97.	2.8	44
102	Expression of the murine glutathione S-transferase α3 (GSTA3) subunit is markedly induced during adipocyte differentiation: activation of the GSTA3 gene promoter by the pro-adipogenic eicosanoid 15-deoxy-Δ12,14-prostaglandin J2. Biochemical and Biophysical Research Communications, 2003, 312, 1226-1235.	2.1	44
103	Tissue-specific Expression and Subcellular Distribution of Murine Glutathione S-transferase Class Kappa. Journal of Histochemistry and Cytochemistry, 2004, 52, 653-662.	2.5	44
104	NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers, 2020, 12, 3609.	3.7	44
105	Prostaglandin D2 synthase enzymes and PPARÎ ³ are co-expressed in mouse 3T3-L1 adipocytes and human tissues. Prostaglandins and Other Lipid Mediators, 2003, 70, 267-284.	1.9	43
106	Over-expression of P-glycoprotein and glutathione S-transferase PI in MCF-7 cells selected for vincristine resistancein vitro. International Journal of Cancer, 1992, 52, 241-246.	5.1	42
107	The cap'n'collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chemico-Biological Interactions, 2011, 192, 37-45.	4.0	42
108	Clutathione S-transferase isoenzymes in human renal carcinoma demonstrated by immunohistochemistry. Carcinogenesis, 1989, 10, 1257-1260.	2.8	41

John D Hayes

#	Article	IF	CITATIONS
109	Glutathione-s-transferase pi expression in leukaemia: a comparative analysis with mdr-1 data. British Journal of Cancer, 1990, 62, 209-212.	6.4	39
110	Characterization of the rat glutathione S-transferase Yc2 subunit gene, GSTA5: identification of a putative antioxidant-responsive element in the 5â€2-flanking region of rat GSTA5 that may mediate chemoprotection against aflatoxin B1. Biochemical Journal, 1996, 318, 75-84.	3.7	39
111	11. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. , 1999, , 141-168.		39
112	The membrane-topogenic vectorial behaviour of Nrf1 controls its post-translational modification and transactivation activity. Scientific Reports, 2013, 3, 2006.	3.3	39
113	A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-IºB and Nrf2-Keap1 signaling pathways. Toxicology and Applied Pharmacology, 2013, 272, 852-862.	2.8	38
114	The major glutathione S-transferase in salmonid fish livers is homologous to the mammalian pi-class GST. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 93-98.	0.2	37
115	Novel homodimeric and heterodimeric rat γ-hydroxybutyrate synthases that associate with the Golgi apparatus define a distinct subclass of aldo-keto reductase 7 family proteins. Biochemical Journal, 2002, 366, 847-861.	3.7	37
116	Analysis of the role of Nrf2 in the expression of liver proteins in mice using two-dimensional gel-based proteomics. Pharmacological Reports, 2012, 64, 680-697.	3.3	37
117	Purification from rat liver of a novel constitutively expressed member of the aldo-keto reductase 7 family that is widely distributed in extrahepatic tissues. Biochemical Journal, 2000, 348, 389-400.	3.7	36
118	1-Cyano-2,3-epithiopropane is a novel plant-derived chemopreventive agent which induces cytoprotective genes that afford resistance against the genotoxic Â,Â-unsaturated aldehyde acrolein. Carcinogenesis, 2009, 30, 1754-1762.	2.8	36
119	Human Mu-class glutathione S-transferases present in liver, skeletal muscle and testicular tissue. BBA - Proteins and Proteomics, 1993, 1203, 131-141.	2.1	35
120	Nrf2-Mediated Neuroprotection Against Recurrent Hypoglycemia Is Insufficient to Prevent Cognitive Impairment in a Rodent Model of Type 1 Diabetes. Diabetes, 2016, 65, 3151-3160.	0.6	34
121	Glutathione <i>S</i> -transferases in man: the relationship between rat and human enzymes. Biochemical Society Transactions, 1987, 15, 721-725.	3.4	31
122	Characterization of the rat aflatoxin B1 aldehyde reductase gene, AKR7A1. Structure and chromosomal localization of AKR7A1 as well as identification of antioxidant response elements in the gene promoter. Carcinogenesis, 2003, 24, 727-737.	2.8	31
123	Clutathione S-transferase levels in autoimmune chronic active hepatitis: A more sensitive index of hepatocellular damage than aspartate transaminase. Clinica Chimica Acta, 1988, 172, 211-216.	1.1	30
124	Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. Toxicology and Applied Pharmacology, 2018, 360, 45-57.	2.8	29
125	Positive and negative regulation of prostaglandin E2 biosynthesis in human colorectal carcinoma cells by cancer chemopreventive agents. Biochemical Pharmacology, 2003, 66, 51-61.	4.4	28
126	Fish and mammalian liver cytosolic glutathione S-transferases: Substrate specificities and immunological comparison. Marine Environmental Research, 1989, 28, 41-46.	2.5	27

#	Article	IF	CITATIONS
127	Nrf2 target genes can be controlled by neuronal activity in the absence of Nrf2 and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1818-E1820.	7.1	26
128	Characterization of liver injury, oval cell proliferation and cholangiocarcinogenesis in glutathione S-transferase A3 knockout mice. Carcinogenesis, 2017, 38, 717-727.	2.8	26
129	Epigenetic Control of NRF2-Directed Cellular Antioxidant Status in Dictating Life-Death Decisions. Molecular Cell, 2017, 68, 5-7.	9.7	26
130	Plasma glutathione S-transferase measurements by radioimmunoassay: a sensitive index of hepatocellular damage in man. Clinica Chimica Acta, 1985, 146, 11-19.	1.1	25
131	Purification of acidic glutathione S-transferases from human lung, placenta and erythrocyte and the development of a specific radioimmunoassay for their measurement. Clinica Chimica Acta, 1988, 177, 65-75.	1.1	25
132	A leptin-regulated circuit controls glucose mobilization during noxious stimuli. Journal of Clinical Investigation, 2017, 127, 3103-3113.	8.2	25
133	Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radical Biology and Medicine, 2022, 188, 221-261.	2.9	24
134	Expression of glyoxalase, glutathione peroxidase and glutathione S-transferase isoenzymes in different bovine tissues. BBA - Proteins and Proteomics, 1989, 994, 21-29.	2.1	23
135	Growth hormone- and testosterone-dependent regulation of glutathione transferase subunit A5 in rat liver. Biochemical Journal, 1998, 332, 763-768.	3.7	23
136	Modulation of glutathione S-transferases and glutathione peroxidase by the anticarcinogen butylated hydroxyanisole in murine extrahepatic organs. Carcinogenesis, 1992, 13, 2255-2261.	2.8	21
137	Oncogene-Stimulated Congestion at the KEAP1 Stress Signaling Hub Allows Bypass of NRF2 and Induction of NRF2-Target Genes that Promote Tumor Survival. Cancer Cell, 2017, 32, 539-541.	16.8	20
138	Increased levels of alpha-class and pi-class glutathione S-transferases in cell lines resistant to 1-chloro-2,4-dinitrobenzene. FEBS Journal, 1993, 217, 671-676.	0.2	19
139	Non-canonical Keap1-independent activation of Nrf2 in astrocytes by mild oxidative stress. Redox Biology, 2021, 47, 102158.	9.0	18
140	Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. Chemical Research in Toxicology, 2019, 32, 2538-2551.	3.3	17
141	Plasma glutathione S-transferase measurements in patients with alcoholic cirrhosis. Clinica Chimica Acta, 1987, 169, 85-89.	1.1	16
142	Glutathione S-transferase localization in aflatoxin B1-treated rat livers. Carcinogenesis, 1990, 11, 927-931.	2.8	15
143	Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D 2 synthase. European Journal of Medicinal Chemistry, 2010, 45, 447-454.	5.5	15

Beam-Steering All-Optical Switch for Multi-Core Fibers. , 2017, , .

15

#	Article	IF	CITATIONS
145	Decreased hepatic glutathione S-transferase A, AA and L concentration produced by prolonged thyroid hormone administration. Biochemical Pharmacology, 1988, 37, 3201-3204.	4.4	14
146	Localisation of α, μ and π class glutatione S-transferases in kidney: comparison with CuZn superoxide dismutase. Biochimica Et Biophysica Acta - General Subjects, 1993, 1157, 204-208.	2.4	14
147	Regulation of the CNC-bZIP transcription factor Nrf2 by Keap1 and the axis between GSK-3 and β-TrCP. Current Opinion in Toxicology, 2016, 1, 92-103.	5.0	14
148	Alteration of glutathione S-transferase levels in Barrett's metaplasia compared to normal oesophageal epithelium. European Journal of Gastroenterology and Hepatology, 2003, 15, 41-47.	1.6	13
149	Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica, 2015, 100, 1076-85.	3.5	13
150	Determinants of specificity for aflatoxin B1-8,9-epoxide in Alpha-class glutathione S-transferases. Biochemical Journal, 1999, 339, 95-101.	3.7	11
151	Purification from rat liver of a novel constitutively expressed member of the aldo-keto reductase 7 family that is widely distributed in extrahepatic tissues. Biochemical Journal, 2000, 348, 389.	3.7	11
152	Using Participant Event Monitoring in a Cohort Study of Unintentional Injuries Among Children and Adolescents. American Journal of Public Health, 2007, 97, 283-290.	2.7	11
153	a ^{~†} This work was funded partly by a grant from the Association for International Cancer Research. EME was supported by a Beit Memorial Fellowship and VPK was supported by a Biomedical Research Centre Studentship. The experiments performed in Stockholm were supported by the Knut and Alice Wallenberg Foundation, 1Abbreviations: 2-CBA, 2-carboxybenzaldebyde: 4-NBA, 4-nitrobenzaldebyde:	4.4	9
154	9,10-PQ, 9,10-phenant. Biochemical Pharmacology, 2001, 62, 1511-1519. Purification of bile acid-binding proteins from rat hepatic cytosol. Use of a photoaffinity label to detect novel Yâ€ ² binders. Lipids and Lipid Metabolism, 1986, 875, 270-285.	2.6	8
155	Expression and Localization of Rat Aldo-Keto Reductases and Induction of the 1B13 and 1D2 Isoforms by Phenolic Antioxidants. Drug Metabolism and Disposition, 2010, 38, 341-346.	3.3	8
156	New insights into nuclear factor erythroid 2-related factors in toxicology and pharmacology. Toxicology and Applied Pharmacology, 2019, 367, 33-35.	2.8	8
157	An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter β-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biology, 2022, 55, 102396.	9.0	8
158	Spatial monitoring of toxicity in HMOX-LacZ transgenic mice. Transgenic Research, 2010, 19, 897-902.	2.4	7
159	Peroxiredoxin Gene Expression Signatures in Liver Reflect Toxic Insult. Assay and Drug Development Technologies, 2010, 8, 512-517.	1.2	6
160	3â€(2â€Oxoethylidene)indolinâ€2â€one Derivatives Activate Nrf2 and Inhibit NFâ€₽̂B: Potential Candidates for Chemoprevention. ChemMedChem, 2014, 9, 1763-1774.	3.2	5
161	Aflatoxin Aldehyde Reductases. ACS Symposium Series, 2003, , 155-170.	0.5	4
162	Low signal correction scheme for low dose CBCT: the good, the bad, and the ugly. , 2017, , .		3

Low signal correction scheme for low dose CBCT: the good, the bad, and the ugly. , 2017, , . 162

#	Article	IF	CITATIONS
163	Determinants of specificity for aflatoxin B1-8,9-epoxide in Alpha-class glutathione S-transferases. Biochemical Journal, 1999, 339, 95.	3.7	2
164	Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber. Proceedings of SPIE, 2017, , .	0.8	2
165	Con Drury: philosopher and psychiatrist. History of Psychiatry, 2017, 28, 391-409.	0.3	2
166	Competing Reactions of Aflatoxin B1 Dialdehyde: Enzymatic Reduction versus Adduction with Lysine. ACS Symposium Series, 2003, , 171-182.	0.5	1
167	Cut-price knockout?. Human and Experimental Toxicology, 1995, 14, 929-930.	2.2	0
168	Mammalian Glutathione S-Transferase Genes. , 2006, , 27-46.		0
169	Dimerisation of adaptor protein Keap1 is required to correctly position Nrf2 for ubiquitylation upon the Cul3â€Rbx1 holoenzyme: the †fixedâ€ends' model. FASEB Journal, 2007, 21, A1020.	0.5	0
170	Detoxification. , 2011, , 1101-1104.		0
171	Detoxification. , 2015, , 1-4.		0
172	Detoxification. , 2015, , 1354-1357.		0