Arko Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3796032/publications.pdf Version: 2024-02-01

ADKO CHOSH

#	Article	IF	CITATIONS
1	Large cognitive fluctuations surrounding sleep in daily living. IScience, 2021, 24, 102159.	4.1	17
2	Striatal dopamine synthesis capacity reflects smartphone social activity. IScience, 2021, 24, 102497.	4.1	22
3	Artificial neural network trained on smartphone behavior can trace epileptiform activity in epilepsy. IScience, 2021, 24, 102538.	4.1	11
4	Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data. Npj Digital Medicine, 2021, 4, 90.	10.9	20
5	Generalized priority-based model for smartphone screen touches. Physical Review E, 2020, 102, 012307.	2.1	6
6	Capturing sleep–wake cycles by using day-to-day smartphone touchscreen interactions. Npj Digital Medicine, 2019, 2, 73.	10.9	37
7	The details of past actions on a smartphone touchscreen are reflected by intrinsic sensorimotor dynamics. Npj Digital Medicine, 2018, 1, 4.	10.9	22
8	Time to be "smartâ€â€"Opportunities Arising From Smartphone-Based Behavioral Analysis in Daily Patient Care. Frontiers in Behavioral Neuroscience, 2018, 12, 303.	2.0	8
9	Linking Elementary Properties of the Human Brain to the Behaviour Captured on Touchscreen Smartphones. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 373-381.	0.3	1
10	Voluntary motor commands reveal awareness and control of involuntary movement. Cognition, 2016, 155, 155-167.	2.2	9
11	Bilateral Symmetry of Distortions of Tactile Size Perception. Perception, 2015, 44, 1251-1262.	1.2	35
12	Sensorimotor organization of a sustained involuntary movement. Frontiers in Behavioral Neuroscience, 2015, 9, 185.	2.0	10
13	Use-Dependent Cortical Processing from Fingertips in Touchscreen Phone Users. Current Biology, 2015, 25, 109-116.	3.9	92
14	Botulinum Toxin-A dose dependent perceptual loss on the hand after its cosmetic use on the face. Cortex, 2015, 63, 118-120.	2.4	2
15	Withdrawal of voluntary inhibition unravels the off state of the spontaneous blink generator. Neuropsychologia, 2014, 65, 279-286.	1.6	5
16	Altered cortical activation from the hand after facial botulinum toxin treatment. Annals of Clinical and Translational Neurology, 2014, 1, 64-68.	3.7	6
17	Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats. NeuroImage, 2014, 87, 72-79.	4.2	18
18	The spinal reflex cannot be perceptually separated from voluntary movements. Journal of Physiology, 2014, 592, 141-152.	2.9	12

Arko Ghosh

#	Article	IF	CITATIONS
19	Using voluntary motor commands to inhibit involuntary arm movements. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141139.	2.6	17
20	Tactile underrepresentation of the forehead along the vertical axis. Clinical Neurophysiology, 2014, 125, 856-858.	1.5	1
21	Somatotopic astrocytic activity in the somatosensory cortex. Glia, 2013, 61, 601-610.	4.9	22
22	Heterogeneous Spine Loss in Layer 5 Cortical Neurons after Spinal Cord Injury. Cerebral Cortex, 2012, 22, 1309-1317.	2.9	42
23	Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nature Neuroscience, 2010, 13, 97-104.	14.8	167
24	Functional and Anatomical Reorganization of the Sensory-Motor Cortex after Incomplete Spinal Cord Injury in Adult Rats. Journal of Neuroscience, 2009, 29, 12210-12219.	3.6	149
25	Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Experimental Neurology, 2009, 216, 471-480.	4.1	93
26	Functional reorganization in rat somatosensory cortex assessed by fMRI: Elastic image registration based on structural landmarks in fMRI images and application to spinal cord injured rats. NeuroImage, 2009, 44, 1345-1354.	4.2	78
27	Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain, 2008, 131, 2061-2070.	7.6	129
28	Hypertonicity induced apoptosis in HL-60 cells in the presence of intracellular potassium. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1281-1288.	4.9	4
29	Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Molecular and Cellular Neurosciences, 2006, 32, 161-173.	2.2	77