
Simon P Hogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/379594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eosinophilic esophagitis: Immune mechanisms and therapeutic targets. Clinical and Experimental Allergy, 2022, 52, 1142-1156.	2.9	14
2	Dysregulation of intestinal epithelial CFTR-dependent Clâ^' ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunology, 2021, 14, 135-143.	6.0	9
3	Intestinal epithelial cells in tolerance and allergy to dietary antigens. Journal of Allergy and Clinical Immunology, 2021, 147, 45-48.	2.9	9
4	IL-4–BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 280-295.	2.9	23
5	Thermoneutrality Alters Gastrointestinal Antigen Passage Patterning and Predisposes to Oral Antigen Sensitization in Mice. Frontiers in Immunology, 2021, 12, 636198.	4.8	7
6	Uridine diphosphate–glucose/P2Y14R axis is a nonchemokine pathway that selectively promotes eosinophil accumulation. Journal of Clinical Investigation, 2021, 131, .	8.2	2
7	Editorial: Innate Cells in the Pathogenesis of Food Allergy. Frontiers in Immunology, 2021, 12, 709991.	4.8	3
8	Severity grading system for acute allergic reactions—time for validation and assessment of best practices. Journal of Allergy and Clinical Immunology, 2021, 148, 86-88.	2.9	3
9	PIR-B Regulates CD4+ IL17a+ T-Cell Survival and Restricts T-Cell–Dependent Intestinal Inflammatory Responses. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1479-1502.	4.5	5
10	Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. ELife, 2021, 10, .	6.0	34
11	Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2020, 145, 239-254.e2.	2.9	24
12	Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunology, 2020, 13, 271-282.	6.0	89
13	Developments allergy in 2019 through the eyes of Clinical and Experimental Allergy, Part II clinical allergy. Clinical and Experimental Allergy, 2020, 50, 1302-1312.	2.9	1
14	Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms. Clinical and Experimental Allergy, 2020, 50, 1294-1301.	2.9	1
15	709 PAIRED IMMUNOGLOBULIN-LIKE RECEPTOR B REGULATES INFLAMMATION AND HISTOPATHOLOGY IN T-CELL MEDIATED COLITIS. Gastroenterology, 2020, 158, S-148.	1.3	0
16	IL-4 signaling directly regulates IL-9 producing intestinal mast cell precursor (iMCP9) in experimental food allergy. Journal of Allergy and Clinical Immunology, 2020, 145, AB249.	2.9	1
17	Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight, 2020, 5, .	5.0	25
18	Recent advances in mechanisms of food allergy and anaphylaxis. F1000Research, 2020, 9, 863.	1.6	7

#	Article	IF	CITATIONS
19	Deletion of ΔdblGata motif leads to increased predisposition and severity of IgE-mediated food-induced anaphylaxis response. PLoS ONE, 2019, 14, e0219375.	2.5	6
20	IL-13–induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food food food-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2019, 144, 1058-1073.e3.	2.9	44
21	17β-Estradiol protects the esophageal epithelium from IL-13–induced barrier dysfunction and remodeling. Journal of Allergy and Clinical Immunology, 2019, 143, 2131-2146.	2.9	25
22	What's old is new again: Batf transcription factors and Th9 cells. Mucosal Immunology, 2019, 12, 583-585.	6.0	2
23	Alarming eosinophils to combat tumors. Nature Immunology, 2019, 20, 250-252.	14.5	18
24	Developments in the mechanisms of allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part I. Clinical and Experimental Allergy, 2019, 49, 1541-1549.	2.9	2
25	Developments in the field of clinical allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part II. Clinical and Experimental Allergy, 2019, 49, 1550-1557.	2.9	2
26	Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4+ T-cell development and allergic airway disease. Journal of Allergy and Clinical Immunology, 2019, 143, 245-257.e6.	2.9	10
27	C5a receptor 1 ^{â^'/â^'} mice are protected from the development of IgEâ€mediated experimental food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 767-779.	5.7	15
28	X chromosomal linkage to eosinophilic esophagitis susceptibility. Journal of Allergy and Clinical Immunology, 2018, 141, AB225.	2.9	1
29	The vascular endothelial specific IL-4 receptor alpha–ABL1 kinase signaling axis regulates the severity of IgE-mediated anaphylactic reactions. Journal of Allergy and Clinical Immunology, 2018, 142, 1159-1172.e5.	2.9	21
30	Platelet Activation is Increased in IgE-mediated Systemic Anaphylaxis but not in IgE-mediated Oral Antigen-induced Anaphylaxis in Mice. Journal of Allergy and Clinical Immunology, 2018, 141, AB192.	2.9	0
31	Developments in the field of allergy in 2017 through the eyes of Clinical and Experimental Allergy. Clinical and Experimental Allergy, 2018, 48, 1606-1621.	2.9	2
32	Solute carrier family 9, subfamily A, member 3 (SLC9A3)/sodium-hydrogen exchanger member 3 (NHE3) dysregulation and dilated intercellular spaces in patients with eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2018, 142, 1843-1855.	2.9	21
33	715 - Human Intestinal Organoid In Vivo Responds to Murine Enteral Content. Gastroenterology, 2018, 154, S-148.	1.3	0
34	Investigating innate immune mechanisms in early-life development and outcomes of food allergy. Journal of Allergy and Clinical Immunology, 2018, 142, 790-792.	2.9	3
35	Mechanically induced development and maturation of human intestinal organoids in vivo. Nature Biomedical Engineering, 2018, 2, 429-442.	22.5	79
36	Enhanced survival following oral and systemic Salmonella enterica serovar Typhimurium infection in polymeric immunoglobulin receptor knockout mice. PLoS ONE, 2018, 13, e0198434.	2.5	8

#	Article	IF	CITATIONS
37	Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight, 2018, 3, .	5.0	61
38	Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients. Gastroenterology, 2017, 152, 1345-1357.e7.	1.3	59
39	Myeloid-derived NF-κB negative regulation of PU.1 and c/EBP-β-driven pro-inflammatory cytokine production restrains LPS-induced shock. Innate Immunity, 2017, 23, 175-187.	2.4	20
40	The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis. Scientific Reports, 2017, 7, 46416.	3.3	37
41	Manipulating DNA damage-response signaling for the treatment of immune-mediated diseases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4782-E4791.	7.1	40
42	In Memory and Celebration: Dr. James J. Lee. Clinical and Experimental Allergy, 2017, 47, 980-981.	2.9	0
43	Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nature Medicine, 2017, 23, 829-838.	30.7	178
44	The Effect Of SLC9A3 On Esophageal Epithelium In Eosinophilic Esophagitis (EoE). Journal of Allergy and Clinical Immunology, 2017, 139, AB87.	2.9	0
45	Vascular Endothelium–Specific IL-4Ra Signaling Axis Regulates Severity of IgE-Mediated Anaphylactic Reactions. Journal of Allergy and Clinical Immunology, 2017, 139, AB188.	2.9	0
46	Role Of Hormone Signaling In Eosinophilic Esophagitis: 17-Beta Estradiol Attenuation Of IL-13 Induced Barrier Dysfunction In Esophageal Epithelium. Journal of Allergy and Clinical Immunology, 2017, 139, AB273.	2.9	0
47	Inhibition of Vascular Endothelial Abl1 Signaling Protects Against Food-Induced Anaphylaxis in Mice Journal of Allergy and Clinical Immunology, 2017, 139, AB277.	2.9	0
48	IL-13-Induced Goblet Cell Antigen Passages (GAP's) are Required for the Acute Onset of a Food-Induced Anaphylactic Reaction. Journal of Allergy and Clinical Immunology, 2017, 139, AB277.	2.9	0
49	Developments in the field of allergy in 2016 through the eyes of Clinical and Experimental Allergy. Clinical and Experimental Allergy, 2017, 47, 1512-1525.	2.9	0
50	Lipopolysaccharide suppresses IgEâ€mast cellâ€mediated reactions. Clinical and Experimental Allergy, 2017, 47, 1574-1585.	2.9	16
51	Mechanically Induced Enterogenesis of Human Intestinal Organoids in vivo. Gastroenterology, 2017, 152, S83-S84.	1.3	0
52	Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Science Immunology, 2017, 2, .	11.9	167
53	Modeling <scp>T_H</scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.	6.0	107
54	Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI Insight, 2017, 2, e91288.	5.0	56

#	Article	IF	CITATIONS
55	P-163 Dysregulation of Star-Related Lipid Transfer Domain Protein (StarD7) Function Alters Intestinal Epithelial Barrier Function and Susceptibility to Experimental Colitis. Inflammatory Bowel Diseases, 2016, 22, S59.	1.9	0
56	Developments in the field of clinical allergy in 2015 through the eyes of <i>Clinical and Experimental Allergy, 2016, 46, 1389-1397.</i>	2.9	3
57	Developments in the field of allergy mechanisms in 2015 through the eyes of Clinical & Experimental Allergy. Clinical and Experimental Allergy, 2016, 46, 1248-1257.	2.9	0
58	Role of matrix metalloproteinaseâ \in 8 as a mediator of injury in intestinal ischemia and reperfusion. FASEB Journal, 2016, 30, 3453-3460.	0.5	15
59	Cyclophilin D regulates necrosis, but not apoptosis, of murine eosinophils. American Journal of Physiology - Renal Physiology, 2016, 310, G609-G617.	3.4	9
60	IL-25 and CD4+ TH2 cells enhance type 2 innate lymphoid cell–derived IL-13 production, which promotes IgE-mediated experimental food allergy. Journal of Allergy and Clinical Immunology, 2016, 137, 1216-1225.e5.	2.9	122
61	LRRC31 is induced by IL-13 and regulates kallikrein expression and barrier function in the esophageal epithelium. Mucosal Immunology, 2016, 9, 744-756.	6.0	29
62	Loss of ILâ€4Rα–mediated PI3K signaling accelerates the progression of IgE/mast cell–mediated reactions. Immunity, Inflammation and Disease, 2015, 3, 420-430.	2.7	6
63	Loss of IL-4Rα-Mediated PI3K Signaling Accelerates the Onset and Progression of IgE/Mast Cell-Mediated Reactions. Journal of Allergy and Clinical Immunology, 2015, 135, AB200.	2.9	0
64	IL-33 Signaling Protects from Murine Oxazolone Colitis by Supporting Intestinal Epithelial Function. Inflammatory Bowel Diseases, 2015, 21, 2737-2746.	1.9	48
65	20 IL-33 Signaling Augments Epithelial Barrier Function In Vitro and Protects Mice From Oxazolone Colitis. Gastroenterology, 2015, 148, S-7.	1.3	0
66	Su1104 Dysregulation of SLC9A3 Function in Eosinophilic Esophagitis. Gastroenterology, 2015, 148, S-409.	1.3	0
67	Su1368 Undernutrition and Altered Gut Secretory IgA Synergistically Increase Bacterial Burdens in the Mesenteric Lymph Nodes. Gastroenterology, 2015, 148, S-487.	1.3	0
68	Su1110 IL-13-Induced Dilated Intracellular Space (DIS) Formation in Esophageal Epithelial Cells Is Dependent on SLC9A3 Function. Gastroenterology, 2015, 148, S-410.	1.3	0
69	515 microRNA-375-KLF5 Regulation of Intestinal Epithelial CFTR Function. Gastroenterology, 2015, 148, S-101.	1.3	0
70	Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity, 2015, 43, 788-802.	14.3	178
71	Factor XIII Transglutaminase Supports the Resolution of Mucosal Damage in Experimental Colitis. PLoS ONE, 2015, 10, e0128113.	2.5	14
72	Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunology, 2014, 7, 718-729.	6.0	251

#	Article	IF	CITATIONS
73	Mo1688 Undernutrition and Augmented Levels of LPS in the Colon Additively Impair Small Intestinal Barrier Function in Weanling Mice. Gastroenterology, 2014, 146, S-636.	1.3	0
74	Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65. American Journal of Physiology - Renal Physiology, 2014, 306, G974-G982.	3.4	8
75	26 Calprotectin:RAGE:NFkB Axis Regulates Macrophage-Derived CCL11 and Eosinophilic Inflammation in Experimental Colitis. Gastroenterology, 2013, 144, S-7.	1.3	0
76	Expanding the paradigm of eosinophilic esophagitis: Mast cells and IL-9. Journal of Allergy and Clinical Immunology, 2013, 131, 1583-1585.	2.9	14
77	CD14+ CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis. Journal of Leukocyte Biology, 2013, 94, 1061-1070.	3.3	38
78	Eosinophils in infection and intestinal immunity. Current Opinion in Gastroenterology, 2013, 29, 7-14.	2.3	73
79	Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. American Journal of Physiology - Renal Physiology, 2013, 304, G479-G489.	3.4	64
80	Intestinal CCL11 and Eosinophilic Inflammation Is Regulated by Myeloid Cell–Specific RelA/p65 in Mice. Journal of Immunology, 2013, 190, 4773-4785.	0.8	32
81	Trefoil Factor 2 Negatively Regulates Type 1 Immunity against <i>Toxoplasma gondii</i> . Journal of Immunology, 2012, 189, 3078-3084.	0.8	23
82	Food-induced anaphylaxis: mast cells as modulators of anaphylactic severity. Seminars in Immunopathology, 2012, 34, 643-653.	6.1	41
83	Intestinal Mast Cell Levels Control Severity of Oral Antigen-Induced Anaphylaxis in Mice. American Journal of Pathology, 2012, 180, 1535-1546.	3.8	93
84	Neonatal Fc receptor (FcRn) and maternalâ€toâ€newborn IgE absorption. Clinical and Experimental Allergy, 2012, 42, 1656-1659.	2.9	1
85	MiR-375 is downregulated in epithelial cells after IL-13 stimulation and regulates an IL-13-induced epithelial transcriptome. Mucosal Immunology, 2012, 5, 388-396.	6.0	60
86	Induction and suppression of allergic diarrhea and systemic anaphylaxis in a murine model of food allergy. Journal of Allergy and Clinical Immunology, 2012, 129, 1343-1348.	2.9	31
87	Mo1792 Intestinal CCL11 and Eosinophilic Inflammation is Regulated by Myeloid Cell-Specific RelA/p65 in Mice. Gastroenterology, 2012, 142, S-686.	1.3	Ο
88	Ingested allergens must be absorbed systemically to induce systemic anaphylaxis. Journal of Allergy and Clinical Immunology, 2011, 127, 982-989.e1.	2.9	73
89	Increased susceptibility of 129SvEvBrd mice to IgE-Mast cell mediated anaphylaxis. BMC Immunology, 2011, 12, 14.	2.2	19
90	TGFâ€Î² limits ILâ€33 production and promotes the resolution of colitis through regulation of macrophage function. European Journal of Immunology, 2011, 41, 2000-2009.	2.9	77

#	Article	IF	CITATIONS
91	Colonic Eosinophilic Inflammation in Experimental Colitis Is Mediated by Ly6Chigh CCR2+ Inflammatory Monocyte/Macrophage-Derived CCL11. Journal of Immunology, 2011, 186, 5993-6003.	0.8	104
92	Interleukin-13 (IL-13)/IL-13 Receptor α1 (IL-13Rα1) Signaling Regulates Intestinal Epithelial Cystic Fibrosis Transmembrane Conductance Regulator Channel-dependent Clâ ^{°°} Secretion. Journal of Biological Chemistry, 2011, 286, 13357-13369.	3.4	48
93	Murine Guanylate Cyclase C Regulates Colonic Injury and Inflammation. Journal of Immunology, 2011, 186, 7205-7214.	0.8	56
94	Alanyl-glutamine promotes intestinal epithelial cell homeostasis in vitro and in a murine model of weanling undernutrition. American Journal of Physiology - Renal Physiology, 2011, 301, G612-G622.	3.4	49
95	Mast cell chymase regulation of homeostatic intestinal epithelial barrier function via PARâ€2/MMPâ€2â€dependent and â€independent mechanisms. FASEB Journal, 2011, 25, 242.7.	0.5	0
96	Chinese herbal antiâ€asthma tea to go!. Clinical and Experimental Allergy, 2010, 40, 1590-1592.	2.9	4
97	Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut, 2010, 59, 1066-1078.	12.1	25
98	Importance of Cytokines in Murine Allergic Airway Disease and Human Asthma. Journal of Immunology, 2010, 184, 1663-1674.	0.8	246
99	Differential roles for the IL-9/IL-9 receptor α-chain pathway in systemic and oral antigen–induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2010, 125, 469-476.e2.	2.9	103
100	Paired Immunoglobulin-Like Receptor B (PIR-B) Negatively Regulates Macrophage Activation in Experimental Colitis. Gastroenterology, 2010, 139, 530-541.	1.3	47
101	Resistin-Like Molecule α Decreases Glucose Tolerance during Intestinal Inflammation. Journal of Immunology, 2009, 182, 2357-2363.	0.8	42
102	Intestinal epithelial cell secretion of RELM-β protects against gastrointestinal worm infection. Journal of Experimental Medicine, 2009, 206, 2947-2957.	8.5	236
103	Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22381-22386.	7.1	144
104	Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut, 2009, 58, 49-58.	12.1	46
105	Peanuts can contribute to anaphylactic shock by activating complement. Journal of Allergy and Clinical Immunology, 2009, 123, 342-351.	2.9	119
106	Intestinal barrier function: Molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology, 2009, 124, 3-20.	2.9	1,246
107	Functional Role of Eosinophils in Gastrointestinal Inflammation. Immunology and Allergy Clinics of North America, 2009, 29, 129-140.	1.9	30
108	FVB/N mice are highly resistant to primary infection with <i>Nippostrongylus brasiliensis</i> . Parasitology, 2009, 136, 93-106.	1.5	17

#	Article	IF	CITATIONS
109	Dietary allergenic proteins and intestinal immunity: a shift from oral tolerance to sensitization. Clinical and Experimental Allergy, 2008, 38, 229-232.	2.9	8
110	Eosinophils: Biological Properties and Role in Health and Disease. Clinical and Experimental Allergy, 2008, 38, 709-750.	2.9	702
111	Resistin-like molecule α enhances myeloid cell activation and promotes colitis. Journal of Allergy and Clinical Immunology, 2008, 122, 1200-1207.e1.	2.9	60
112	Intestinal Macrophage/Epithelial Cell-Derived CCL11/Eotaxin-1 Mediates Eosinophil Recruitment and Function in Pediatric Ulcerative Colitis. Journal of Immunology, 2008, 181, 7390-7399.	0.8	146
113	IL-9– and mast cell–mediated intestinal permeability predisposes to oral antigen hypersensitivity. Journal of Experimental Medicine, 2008, 205, 897-913.	8.5	246
114	Recent Advances in Eosinophil Biology. International Archives of Allergy and Immunology, 2007, 143, 3-14.	2.1	43
115	Interplay of Adaptive Th2 Immunity with Eotaxin-3/C-C Chemokine Receptor 3 in Eosinophilic Esophagitis. Journal of Pediatric Gastroenterology and Nutrition, 2007, 45, 22-31.	1.8	108
116	ALLERGEN INDUCED TFF2 IS EXPRESSED BY MUCUS-PRODUCING AIRWAY EPITHELIAL CELLS BUT IS NOT A MAJOR REGULATOR OF INFLAMMATORY RESPONSES IN THE MURINE LUNG. Experimental Lung Research, 2006, 32, 483-497.	1.2	24
117	Resistin-like molecule Î ² regulates innate colonic function: Barrier integrity and inflammation susceptibility. Journal of Allergy and Clinical Immunology, 2006, 118, 257-268.	2.9	141
118	The α4bβ7â€integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clinical and Experimental Allergy, 2006, 36, 543-553.	2.9	56
119	Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity. Clinical and Experimental Allergy, 2006, 36, 1575-1583.	2.9	93
120	THE EOSINOPHIL. Annual Review of Immunology, 2006, 24, 147-174.	21.8	1,325
121	Eosinophil function in eosinophil-associated gastrointestinal disorders. Current Allergy and Asthma Reports, 2006, 6, 65-71.	5.3	52
122	ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. Journal of Leukocyte Biology, 2006, 80, 330-341.	3.3	48
123	Mechanistic analysis of experimental food allergen-induced cutaneous reactions. Journal of Leukocyte Biology, 2006, 80, 258-266.	3.3	23
124	Inhibition of Arginase I Activity by RNA Interference Attenuates IL-13-Induced Airways Hyperresponsiveness. Journal of Immunology, 2006, 177, 5595-5603.	0.8	94
125	A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16418-16423.	7.1	188
126	Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. Journal of Clinical Investigation, 2006, 116, 536-547.	8.2	750

#	Article	IF	CITATIONS
127	Building a better mouse model: experimental models of chronic asthma. Clinical and Experimental Allergy, 2005, 35, 1251-1253.	2.9	33
128	Transgenic Expression of Bean α-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity. Journal of Agricultural and Food Chemistry, 2005, 53, 9023-9030.	5.2	161
129	Immunopathogenesis of Experimental Ulcerative Colitis Is Mediated by Eosinophil Peroxidase. Journal of Immunology, 2004, 172, 5664-5675.	0.8	146
130	Review article: the eosinophil as a therapeutic target in gastrointestinal disease. Alimentary Pharmacology and Therapeutics, 2004, 20, 1231-1240.	3.7	47
131	Chemokines in eosinophil-associated gastrointestinal disorders. Current Allergy and Asthma Reports, 2004, 4, 74-82.	5.3	25
132	T helper-2 immunity regulates bronchial hyperresponsiveness in eosinophil-associated gastrointestinal disease in mice. Gastroenterology, 2004, 127, 105-118.	1.3	22
133	Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. Journal of Allergy and Clinical Immunology, 2003, 112, 935-943.	2.9	106
134	A Plant-Based Allergy Vaccine Suppresses Experimental Asthma Via an IFN-γ and CD4+CD45RBlow T Cell-Dependent Mechanism. Journal of Immunology, 2003, 171, 2116-2126.	0.8	50
135	Immunotherapy of Cytotoxic T Cell–resistant Tumors by T Helper 2 Cells. Journal of Experimental Medicine, 2003, 197, 387-393.	8.5	213
136	Enterocyte Expression of the Eotaxin and Interleukin-5 Transgenes Induces Compartmentalized Dysregulation of Eosinophil Trafficking. Journal of Biological Chemistry, 2002, 277, 4406-4412.	3.4	86
137	IL-5 Promotes Eosinophil Trafficking to the Esophagus. Journal of Immunology, 2002, 168, 2464-2469.	0.8	319
138	Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma. Journal of Experimental Medicine, 2002, 195, 1433-1444.	8.5	250
139	Experimental analysis of eosinophil-associated gastrointestinal diseases. Current Opinion in Allergy and Clinical Immunology, 2002, 2, 239-248.	2.3	25
140	IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism. Journal of Allergy and Clinical Immunology, 2001, 108, 594-601.	2.9	264
141	Gastrointestinal Eosinophils in Health and Disease. Advances in Immunology, 2001, 78, 291-328.	2.2	103
142	Gastrointestinal eosinophils. Immunological Reviews, 2001, 179, 139-155.	6.0	247
143	Elemental signals regulating eosinophil accumulation in the lung. Immunological Reviews, 2001, 179, 173-181.	6.0	207
144	A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nature Immunology, 2001, 2, 353-360.	14.5	297

9

#	Article	IF	CITATIONS
145	Interleukin-13 Mediates Airways Hyperreactivity through the IL-4 Receptor-Alpha Chain and STAT-6 Independently of IL-5 and Eotaxin. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 522-530.	2.9	144
146	An etiological role for aeroallergens and eosinophils in experimental esophagitis. Journal of Clinical Investigation, 2001, 107, 83-90.	8.2	567
147	A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6681-6686.	7.1	169
148	Murine Eotaxin-2: A Constitutive Eosinophil Chemokine Induced by Allergen Challenge and IL-4 Overexpression. Journal of Immunology, 2000, 165, 5839-5846.	0.8	158
149	Peyer's patch eosinophils: identification, characterization, and regulation by mucosal allergen exposure, interleukin-5, and eotaxin. Blood, 2000, 96, 1538-44.	1.4	16
150	Chemokines and chemokine receptors: their role in allergic airway disease. Journal of Clinical Immunology, 1999, 19, 250-265.	3.8	82
151	Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. Journal of Clinical Investigation, 1999, 103, 1719-1727.	8.2	352
152	Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. Journal of Immunology, 1999, 162, 445-52.	0.8	93
153	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. European Journal of Immunology, 1998, 28, 413-423.	2.9	118
154	Cellular and molecular regulation of eosinophil trafficking to the lung. Immunology and Cell Biology, 1998, 76, 454-460.	2.3	31
155	Leukotrienes and Inflammation. American Journal of Respiratory and Critical Care Medicine, 1998, 157, S210-S213.	5.6	194
156	An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax, 1998, 53, 849-856.	5.6	298
157	Prevention of Th2-mediated murine allergic airways disease by soluble antigen administration in the neonate. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2441-2445.	7.1	14
158	Mucosal IL-12 gene delivery inhibits allergic airways disease and restores local antiviral immunity. European Journal of Immunology, 1998, 28, 413-423.	2.9	5
159	A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. Journal of Immunology, 1998, 161, 1501-9.	0.8	201
160	Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. Immunology and Cell Biology, 1997, 75, 284-288.	2.3	97
161	Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins Journal of Clinical Investigation, 1997, 99, 1329-1339.	8.2	252
162	Cellular and molecular mechanisms involved in the regulation of eosinophil traffickingin vivo. , 1996, 16, 407-432.		20

#	Article	IF	CITATIONS
163	Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model Journal of Experimental Medicine, 1996, 183, 195-201.	8.5	1,306
164	Cellular and molecular mechanisms involved in the regulation of eosinophil trafficking in vivo. Medicinal Research Reviews, 1996, 16, 407-432.	10.5	2
165	Exclusion of defects in the skeletal muscle specific regions of the DHPR alpha 1 subunit as frequent causes of malignant hyperthermia Journal of Medical Genetics, 1995, 32, 913-914.	3.2	7
166	Detection and partial purification of inositol 1,4,5-trisphosphate 3-kinase from porcine skeletal muscle. Cellular Signalling, 1994, 6, 233-243.	3.6	5
167	The metabolism of d-myo-inositol 1,4,5-trisphosphate and d-myo-inositol 1,3,4,5-tetrakisphosphate by porcine skeletal muscle. FEBS Journal, 1994, 222, 955-964.	0.2	16
168	Purification and Characterization of D-myo-Inositol (1,4,5)/(1,3,4,5)-Polyphosphate 5-Phosphatase from Skeletal Muscle. Archives of Biochemistry and Biophysics, 1994, 311, 47-54.	3.0	8