Jia Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795777/publications.pdf

Version: 2024-02-01

201674 189892 2,650 66 27 50 citations h-index g-index papers 66 66 66 2594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Applied Catalysis A: General, 2014, 470, 250-260.	4.3	203
2	Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis. Journal of Catalysis, 2011, 284, 102-108.	6.2	150
3	C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50, 4299-4358.	38.1	144
4	Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory. ACS Catalysis, 2016, 6, 3147-3157.	11.2	138
5	Recent Approaches in Mechanistic and Kinetic Studies of Catalytic Reactions Using SSITKA Technique. ACS Catalysis, 2014, 4, 4527-4547.	11.2	133
6	Insights into HÃgg Iron-Carbide-Catalyzed Fischer–Tropsch Synthesis: Suppression of CH ₄ Formation and Enhancement of C–C Coupling on χ-Fe ₅ C ₂ (510). ACS Catalysis, 2015, 5, 2203-2208.	11,2	122
7	Reaction mechanism of CO activation and methane formation on Co Fischer–Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling. Journal of Catalysis, 2013, 308, 37-49.	6.2	111
8	Catalysis in microstructured reactors: Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catalysis Today, 2017, 285, 135-146.	4.4	101
9	Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chemical Engineering Journal, 2019, 377, 119763.	12.7	97
10	Understanding the Effect of Cobalt Particle Size on Fischerâ^'Tropsch Synthesis: Surface Species and Mechanistic Studies by SSITKA and Kinetic Isotope Effect. Langmuir, 2010, 26, 16558-16567.	3 . 5	96
11	Effect of alumina phases on hydrocarbon selectivity in Fischer–Tropsch synthesis. Applied Catalysis A: General, 2010, 388, 160-167.	4.3	93
12	Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catalysis, 2021, 11, 2398-2411.	11.2	83
13	Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels. Catalysts, 2019, 9, 259.	3.5	80
14	Particle size effect for cobalt Fischer–Tropsch catalysts based on in situ CO chemisorption. Surface Science, 2016, 648, 67-73.	1.9	62
15	Recent Progresses in Understanding of Co-Based Fischer–Tropsch Catalysis by Means of Transient Kinetic Studies and Theoretical Analysis. Catalysis Letters, 2015, 145, 145-161.	2.6	59
16	The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts. Catalysis Today, 2013, 215, 60-66.	4.4	58
17	A Highly Active and Selective Manganese Oxide Promoted Cobalt-on-Silica Fischer–Tropsch Catalyst. Topics in Catalysis, 2011, 54, 768-777.	2.8	57
18	Highly sensitive electrochemical sensor based on xylan-based Ag@CQDs-rGO nanocomposite for dopamine detection. Applied Surface Science, 2021, 541, 148566.	6.1	49

#	Article	IF	Citations
19	Discrimination of the mechanism of CH ₄ formation in Fischer–Tropsch synthesis on Co catalysts: a combined approach of DFT, kinetic isotope effects and kinetic analysis. Catalysis Science and Technology, 2014, 4, 3534-3543.	4.1	46
20	A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from Green River oil shale. Chemical Engineering Journal, 2019, 377, 120275.	12.7	46
21	Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 2020, 10, 3797-3806.	11.2	37
22	Fischer–Tropsch Synthesis on Hierarchically Structured Cobalt Nanoparticle/Carbon Nanofiber/Carbon Felt Composites. ChemSusChem, 2011, 4, 935-942.	6.8	32
23	Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis. Catalysis Today, 2020, 355, 139-147.	4.4	32
24	Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy and Environment, 2020, 5, 461-472.	8.7	31
25	Understanding the kinetics and Re promotion of carbon nanotube supported cobalt catalysts by SSITKA. Catalysis Today, 2012, 186, 99-108.	4.4	30
26	Molecularâ€Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
27	Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations. Physical Chemistry Chemical Physics, 2019, 21, 19269-19280.	2.8	29
28	SSITKA analysis of CO hydrogenation on Zn modified cobalt catalysts. Journal of Catalysis, 2013, 297, 187-192.	6.2	28
29	Further insights into methane and higher hydrocarbons formation over cobalt-based catalysts with γ-Al2O3, α-Al2O3 and TiO2 as support materials. Journal of Catalysis, 2017, 352, 515-531.	6.2	28
30	SbO _x â€promoted pt nanoparticles supported on CNTs as catalysts for baseâ€free oxidation of glycerol to dihydroxyacetone. AlCHE Journal, 2018, 64, 3979-3987.	3.6	23
31	Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1-x O catalysts. Catalysis Today, 2020, 357, 311-321.	4.4	22
32	Tailoring of Fe/MnK-CNTs Composite Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins from Syngas. Industrial & amp; Engineering Chemistry Research, 2018, 57, 11554-11560.	3.7	21
33	Facile synthesis approach for core-shell TiO2–CdS nanoparticles for enhanced photocatalytic H2 generation from water. Catalysis Today, 2019, 328, 15-20.	4.4	21
34	Carbon Number Dependence of Reaction Mechanism and Kinetics in CO Hydrogenation on a Co-Based Catalyst. ACS Catalysis, 2016, 6, 6674-6686.	11.2	20
35	Adsorption energy-driven carbon number-dependent olefin to paraffin ratio in cobalt-catalyzed Fischer-Tropsch synthesis. Journal of Catalysis, 2017, 349, 110-117.	6.2	19
36	Hydrophobic catalyst support surfaces by silylation of \hat{l}^3 -alumina for Co/Re Fischer-Tropsch synthesis. Catalysis Today, 2018, 299, 20-27.	4.4	19

#	Article	IF	Citations
37	Insight into Size- and Metal-Dependent Activity and the Mechanism for Steam Methane Re-forming in Nanocatalysis. Journal of Physical Chemistry C, 2020, 124, 2501-2512.	3.1	19
38	Core-Shell Nanostructures of Graphene-Wrapped CdS Nanoparticles and TiO2 (CdS@G@TiO2): The Role of Graphene in Enhanced Photocatalytic H2 Generation. Catalysts, 2020, 10, 358.	3. 5	19
39	Fischer–Tropsch Synthesis: Impact of H2 or CO Activation on Methane Selectivity. Catalysis Letters, 2014, 144, 123-132.	2.6	18
40	Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation. Nature Communications, 2021, 12, 6888.	12.8	18
41	Methane Activation on Bimetallic Catalysts: Properties and Functions of Surface Niâ^'Ag Alloy. ChemCatChem, 2019, 11, 3401-3412.	3.7	16
42	Investigation of C1 + C1 Coupling Reactions in Cobalt-Catalyzed Fischer-Tropsch Synthesis by a Combined DFT and Kinetic Isotope Study. Catalysts, 2019, 9, 551.	3.5	15
43	Compact reactor for Fischer–Tropsch synthesis based on hierarchically structured Co catalysts: Towards better stability. Catalysis Today, 2013, 215, 121-130.	4.4	14
44	Microcalorimetric Studies on Co–Re∫î³-Al2O3 Catalysts with Na Impurities for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2014, 53, 1787-1793.	3.7	14
45	A Single-Event MicroKinetic model for the cobalt catalyzed Fischer-Tropsch Synthesis. Applied Catalysis A: General, 2016, 524, 149-162.	4. 3	14
46	Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300, 120716.	20.2	14
47	Kinetic insights into the effect of promoters on Co/Al2O3 for Fischer-Tropsch synthesis. Chemical Engineering Journal, 2022, 445, 136655.	12.7	13
48	Studies of Macroporous Structured Alumina Based Cobalt Catalysts for Fischer–Tropsch Synthesis. Catalysis Letters, 2011, 141, 1739-1745.	2.6	12
49	Fischer–Tropsch Synthesis: Using Deuterium as a Tool to Investigate Primary Product Distribution. Catalysis Letters, 2014, 144, 524-530.	2.6	12
50	Fischer–Tropsch Synthesis: Deuterium Kinetic Isotopic Effect for a 2.5Â% Ru/NaY Catalyst. Topics in Catalysis, 2014, 57, 508-517.	2.8	11
51	Hydrogen from Biomass. , 2013, , 111-133.		9
52	Fischer-Tropsch synthesis: Effect of CO conversion on CH4 and oxygenate selectivities over precipitated Fe-K catalysts. Applied Catalysis A: General, 2018, 560, 144-152.	4.3	9
53	The effect of co-feeding ethene on Fischer-Tropsch synthesis to olefins over Co-based catalysts. Applied Catalysis A: General, 2020, 598, 117564.	4.3	9
54	Transition-Metal Nanoparticle Catalysts Anchored on Carbon Supports via Short-Chain Alginate Linkers. ACS Applied Nano Materials, 2021, 4, 3900-3910.	5.0	8

#	Article	IF	CITATIONS
55	Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. Journal of Industrial and Engineering Chemistry, 2022, 105, 191-209.	5.8	8
56	Descriptor-Based Microkinetic Modeling and Catalyst Screening for CO Hydrogenation. ACS Catalysis, 2021, 11, 14545-14560.	11.2	8
57	Electrochemical syngas production from CO2 and water with CNT supported ZnO catalysts. Catalysis Today, 2021, 364, 172-181.	4.4	7
58	Partial oxidation of methanol to formaldehyde in an annular reactor. Chemical Engineering Journal, 2021, 423, 130141.	12.7	7
59	Promotional effect of in situ generated hydroxyl on olefin selectivity of Co-catalyzed Fischer–Tropsch synthesis. Physical Chemistry Chemical Physics, 2019, 21, 24441-24448.	2.8	6
60	Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions. Topics in Catalysis, 2019, 62, 699-711.	2.8	5
61	A new approach of kinetic modeling: Kinetically consistent energy profile and rate expression analysis. Chemical Engineering Journal, 2022, 444, 136685.	12.7	5
62	Significance of C3 Olefin to Paraffin Ratio in Cobalt Fischer–Tropsch Synthesis. Catalysts, 2020, 10, 967.	3.5	4
63	Fischer-Tropsch Synthesis on Co-Based Catalysts in a Microchannel Reactor: Effect of Temperature and Pressure on Selectivity and Stability. , 2016, , 223-242.		3
64	Engineering Electronic Platinum–Carbon Support Interaction to Tame Carbon Monoxide Activation. Fundamental Research, 2022, , .	3.3	2
65	Effects of Sulphur on a Co/Mn-based Catalyst for Fischer–Tropsch Reactions. Catalysis Letters, 2018, 148, 2980-2991.	2.6	1
66	Molecular‣evel Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie, 0, , .	2.0	O