Clare E Bryant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3795761/publications.pdf

Version: 2024-02-01

87888 56724 8,494 82 38 83 citations h-index g-index papers 91 91 91 18004 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gasdermin D and Beyond – Gasdermin-mediated Pyroptosis in Bacterial Infections. Journal of Molecular Biology, 2022, 434, 167409.	4.2	15
2	Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115857119.	7.1	27
3	Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nature Communications, 2022, 13, 2692.	12.8	21
4	Investigation of Host–Microbe–Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Advanced Biology, 2022, 6, .	2.5	6
5	Single-Molecule Light-Sheet Microscopy with Local Nanopipette Delivery. Analytical Chemistry, 2021, 93, 4092-4099.	6.5	11
6	Compliant Substrates Enhance Macrophage Cytokine Release and NLRP3 Inflammasome Formation During Their Pro-Inflammatory Response. Frontiers in Cell and Developmental Biology, 2021, 9, 639815.	3.7	26
7	SIGNAL: A web-based iterative analysis platform integrating pathway and network approaches optimizes hit selection from genome-scale assays. Cell Systems, 2021, 12, 338-352.e5.	6.2	7
8	Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Reports, 2021, 36, 109614.	6.4	16
9	A genome-wide screen uncovers multiple roles for mitochondrial nucleoside diphosphate kinase D in inflammasome activation. Science Signaling, 2021, 14, .	3.6	13
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5 . 4	148
11	Pattern recognition receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	O
12	Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends in Immunology, 2021, 42, 807-823.	6.8	19
13	Inflammasome activation by Salmonella. Current Opinion in Microbiology, 2021, 64, 27-32.	5.1	18
14	COVID-19 stokes inflammasomes. Journal of Experimental Medicine, 2021, 218, .	8.5	7
15	<i>Salmonella</i> Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages. Journal of Immunology, 2021, 206, 631-640.	0.8	54
16	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	14.3	98
17	Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella. Nature Microbiology, 2020, 5, 1588-1597.	13.3	21
18	Preventing pores and inflammation. Science, 2020, 369, 1564-1565.	12.6	11

#	Article	IF	CITATIONS
19	Tissueâ€resident macrophages actively suppress ILâ€1 beta release via a reactive prostanoid/ILâ€10 pathway. EMBO Journal, 2020, 39, e103454.	7.8	33
20	Criticality of plasma membrane lipids reflects activation state of macrophage cells. Journal of the Royal Society Interface, 2020, 17, 20190803.	3.4	15
21	The Parkinson's disease–associated kinase LRRK2 regulates genes required for cell adhesion, polarization, and chemotaxis in activated murine macrophages. Journal of Biological Chemistry, 2020, 295, 10857-10867.	3.4	12
22	Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and ratÂneuronal cell death. Communications Biology, 2020, 3, 79.	4.4	55
23	MyD88 Death-Domain Oligomerization Determines Myddosome Architecture: Implications for Toll-like Receptor Signaling. Structure, 2020, 28, 281-289.e3.	3.3	45
24	Chicken cGAS Senses Fowlpox Virus Infection and Regulates Macrophage Effector Functions. Frontiers in Immunology, 2020, 11, 613079.	4.8	7
25	A Vision for Cytokine Biology with 20/20 Clarity. Function, 2020, 2, zqaa042.	2.3	1
26	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	5.2	64
27	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
28	Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends in Immunology, 2019, 40, 939-951.	6.8	13
29	A Comprehensive UHPLC Ion Mobility Quadrupole Time-of-Flight Method for Profiling and Quantification of Eicosanoids, Other Oxylipins, and Fatty Acids. Analytical Chemistry, 2019, 91, 8025-8035.	6.5	40
30	Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cellular and Molecular Life Sciences, 2019, 76, 3667-3678.	5.4	31
31	Chopping <scp>GSDMD</scp> : caspaseâ€8 has joined the team of pyroptosisâ€mediating caspases. EMBO Journal, 2019, 38, .	7.8	29
32	Let's get this pyrin started!. Journal of Biological Chemistry, 2019, 294, 3367-3368.	3.4	0
33	Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity, 2019, 50, 1099-1114.e10.	14.3	139
34	Different soluble aggregates of $\hat{Al^2}$ 42 can give rise to cellular toxicity through different mechanisms. Nature Communications, 2019, 10, 1541.	12.8	140
35	Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Scientific Reports, 2019, 9, 20261.	3.3	22
36	Picomolar concentrations of oligomeric alpha-synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis. Acta Neuropathologica, 2019, 137, 103-120.	7.7	103

#	Article	IF	Citations
37	Pattern recognition receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
38	Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons. Neuropharmacology, 2018, 135, 1-10.	4.1	17
39	Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution. Applied and Environmental Microbiology, 2018, 84, .	3.1	25
40	Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub. ELife, 2018, 7, .	6.0	83
41	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	14.5	1,584
42	Inflammasome Priming in Sterile Inflammatory Disease. Trends in Molecular Medicine, 2017, 23, 165-180.	6.7	193
43	Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Scientific Reports, 2017, 7, 1428.	3.3	114
44	Visualising pattern recognition receptor signalling. Biochemical Society Transactions, 2017, 45, 1077-1085.	3.4	12
45	Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS Pathogens, 2017, 13, e1006383.	4.7	65
46	Nanobodies raised against monomeric É'-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biology, 2017, 15, 57.	3.8	61
47	The N-terminal loop of IRAK-4 death domain regulates ordered assembly of the Myddosome signalling scaffold. Scientific Reports, 2016, 6, 37267.	3.3	17
48	The killer protein Gasdermin D. Cell Death and Differentiation, 2016, 23, 1897-1898.	11.2	15
49	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167, 457-470.e13.	28.9	1,396
50	CARD9 negatively regulates NLRP3-induced IL- $\hat{1}^2$ production on Salmonella infection of macrophages. Nature Communications, 2016, 7, 12874.	12.8	28
51	Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Scientific Reports, 2016, 6, 33928.	3.3	49
52	Colitis susceptibility in p47 phoxâ^'/â^' mice is mediated by the microbiome. Microbiome, 2016, 4, 13.	11.1	34
53	IL-27 Induced by Select <i>Candida</i> spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. Journal of Immunology, 2016, 197, 208-221.	0.8	33
54	Allergens and Activation of the Toll-Like Receptor Response. Methods in Molecular Biology, 2016, 1390, 341-350.	0.9	5

#	Article	IF	CITATIONS
55	Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Scientific Reports, 2015, 5, 17997.	3.3	25
56	International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease. Pharmacological Reviews, 2015, 67, 462-504.	16.0	41
57	Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cellular and Molecular Life Sciences, 2015, 72, 3971-3982.	5.4	28
58	Caspaseâ€8 functions as a key mediator of inflammation and proâ€lLâ€1β processing via both canonical and nonâ€canonical pathways. Immunological Reviews, 2015, 265, 181-193.	6.0	55
59	The frequency and duration of <i>Salmonella</i> $\hat{a}\in$ macrophage adhesion events determines infection efficiency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140033.	4.0	23
60	Toll-like receptor signalling through macromolecular protein complexes. Molecular Immunology, 2015, 63, 162-165.	2.2	72
61	Actin polymerization as a key innate immune effector mechanism to control <i>Salmonella</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17588-17593.	7.1	96
62	The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Science Signaling, 2014, 7, ra70.	3.6	53
63	Caspase-1 Cleavage of the TLR Adaptor TRIF Inhibits Autophagy and \hat{I}^2 -Interferon Production during Pseudomonas aeruginosa Infection. Cell Host and Microbe, 2014, 15, 214-227.	11.0	84
64	The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials, 2014, 35, 3919-3925.	11.4	331
65	Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7403-7408.	7.1	285
66	A Spaetzle-like role for nerve growth factor \hat{l}^2 in vertebrate immunity to <i>Staphylococcus aureus</i> Science, 2014, 346, 641-646.	12.6	68
67	Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology, 2014, 14, 546-558.	22.7	653
68	Identification of Key Residues That Confer Rhodobacter sphaeroides LPS Activity at Horse TLR4/MD-2. PLoS ONE, 2014, 9, e98776.	2.5	17
69	The TLR4 D299G and T399I SNPs Are Constitutively Active to Up-Regulate Expression of Trif-Dependent Genes. PLoS ONE, 2014, 9, e111460.	2.5	19
70	The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Veterinary Research, 2013, 44, 50.	3.0	32
71	The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor. Journal of Biological Chemistry, 2013, 288, 36215-36225.	3.4	51
72	<i>Salmonella</i> Infection Induces Recruitment of Caspase-8 to the Inflammasome To Modulate IL- $1\hat{l}^2$ Production. Journal of Immunology, 2013, 191, 5239-5246.	0.8	206

#	Article	IF	CITATION
73	A Quantitative Comparison of Single-Dye Tracking Analysis Tools Using Monte Carlo Simulations. PLoS ONE, 2013, 8, e64287.	2.5	61
74	Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biology, 2012, 2, 120015.	3.6	74
75	The molecular basis of the host response to lipopolysaccharide. Nature Reviews Microbiology, 2010, 8, 8-14.	28.6	303
76	Multiple redundant stress resistance mechanisms are induced in Salmonella enterica serovar Typhimurium in response to alteration of the intracellular environment via TLR4 signalling. Microbiology (United Kingdom), 2009, 155, 2919-2929.	1.8	18
77	Molecular mechanisms involved in inflammasome activation. Trends in Cell Biology, 2009, 19, 455-464.	7.9	310
78	Tollâ€like receptor 4 signalling through MyD88 is essential to control ⟨i⟩Salmonella enterica⟨li⟩ serovar Typhimurium infection, but not for the initiation of bacterial clearance. Immunology, 2009, 128, 472-483.	4.4	56
79	The cellular Toll-like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Veterinary Immunology and Immunopathology, 2007, 116, 182-189.	1.2	24
80	A Dimer of the Toll-Like Receptor 4 Cytoplasmic Domain Provides a Specific Scaffold for the Recruitment of Signalling Adaptor Proteins. PLoS ONE, 2007, 2, e788.	2.5	166
81	Evaluation of the ability of carprofen and flunixin meglumine to inhibit activation of nuclear factor kappa B. American Journal of Veterinary Research, 2003, 64, 211-215.	0.6	55
82	Nuclear factor kappa B is involved in lipopolysaccharide-stimulated induction of interferon regulatory factor-1 and GAS/GAF DNA-binding in human umbilical vein endothelial cells. British lournal of Pharmacology, 2001–134, 1629-1638	5.4	26