Alexis Vogelzang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3794405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replication-Deficient Lymphocytic Choriomeningitis Virus-Vectored Vaccine Candidate for the Induction of T Cell Immunity against Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2022, 23, 2700.	4.1	4
2	Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice. Journal of Infectious Diseases, 2018, 217, 1667-1671.	4.0	21
3	IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nature Communications, 2017, 8, 14647.	12.8	88
4	Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0169119.	2.5	52
5	Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathogens, 2017, 13, e1006676.	4.7	39
6	Neonatal Fc Receptor Regulation of Lung Immunoglobulin and CD103 ⁺ Dendritic Cells Confers Transient Susceptibility to Tuberculosis. Infection and Immunity, 2016, 84, 2914-2921.	2.2	11
7	Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. MBio, 2016, 7, .	4.1	205
8	Deletion of <i>nuoG</i> from the Vaccine Candidate Mycobacterium bovis BCG Δ <i>ureC</i> :: <i>hly</i> Improves Protection against Tuberculosis. MBio, 2016, 7, .	4.1	62
9	Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 370-383.	2.9	95
10	IL-21 and IL-4 Collaborate To Shape T-Dependent Antibody Responses. Journal of Immunology, 2015, 195, 5123-5135.	0.8	54
11	Dietary Pyridoxine Controls Efficacy of Vitamin B ₆ -Auxotrophic Tuberculosis Vaccine Bacillus Calmette-Guérin Δ <i>ureC</i> :: <i>hly</i> Δ <i>pdx1</i> in Mice. MBio, 2014, 5, e01262-14.	4.1	20
12	Type I IFN signaling triggers immunopathology in tuberculosisâ€susceptible mice by modulating lung phagocyte dynamics. European Journal of Immunology, 2014, 44, 2380-2393.	2.9	190
13	Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. Journal of Infectious Diseases, 2014, 210, 1928-1937.	4.0	112
14	IL-21 Contributes to Fatal Inflammatory Disease in the Absence of Foxp3+ T Regulatory Cells. Journal of Immunology, 2014, 192, 1404-1414.	0.8	18
15	CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. Journal of Clinical Investigation, 2014, 124, 1268-1282.	8.2	183
16	The Tuberculosis Vaccine Candidate Bacillus Calmette-Guérin ΔureC::hly Coexpressing Human Interleukin-7 or -18 Enhances Antigen-Specific T Cell Responses in Mice. PLoS ONE, 2013, 8, e78966.	2.5	24
17	A Subset of Interleukin-21+ Chemokine Receptor CCR9+ T Helper Cells Target Accessory Organs of the Digestive System in Autoimmunity. Immunity, 2011, 34, 602-615.	14.3	104
18	Interleukin-21 Is Critically Required in Autoimmune and Allogeneic Responses to Islet Tissue in Murine Models. Diabetes, 2011, 60, 867-875.	0.6	72

ALEXIS VOGELZANG

#	Article	IF	CITATIONS
19	Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19438-19443.	7.1	56
20	A Fundamental Role for Interleukin-21 in the Generation of T Follicular Helper Cells. Immunity, 2008, 29, 127-137.	14.3	646
21	The modulatory capacity of interleukin-21 in the pathogenesis of autoimmune disease. Frontiers in Bioscience - Landmark, 2008, Volume, 5304.	3.0	9
22	Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nature Biotechnology, 2006, 24, 1279-1284.	17.5	56