Daniel E Otzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3793337/publications.pdf

Version: 2024-02-01

258 papers 13,622 citations

59 h-index 29157 104 g-index

293 all docs 293 docs citations

times ranked

293

13252 citing authors

#	Article	IF	CITATIONS
1	Folding Steps in the Fibrillation of Functional Amyloid: Denaturant Sensitivity Reveals Common Features in Nucleation and Elongation. Journal of Molecular Biology, 2022, 434, 167337.	4.2	10
2	Chaperones mainly suppress primary nucleation during formation of functional amyloid required for bacterial biofilm formation. Chemical Science, 2022, 13, 536-553.	7.4	10
3	A Protein Corona Modulates Interactions of $\hat{I}\pm$ -Synuclein with Nanoparticles and Alters the Rates of the Microscopic Steps of Amyloid Formation. ACS Nano, 2022, 16, 1102-1118.	14.6	9
4	Bidirectional protein–protein interactions control liquid–liquid phase separation of PSD-95 and its interaction partners. IScience, 2022, 25, 103808.	4.1	6
5	Induction, inhibition, and incorporation: Different roles for anionic and zwitterionic lysolipids in the fibrillation of the functional amyloid FapC. Journal of Biological Chemistry, 2022, 298, 101569.	3.4	6
6	The changing face of SDS denaturation: Complexes of Thermomyces lanuginosus lipase with SDS at pH 4.0, 6.0 and 8.0. Journal of Colloid and Interface Science, 2022, 614, 214-232.	9.4	15
7	The C-terminal tail of \hat{l} ±-synuclein protects against aggregate replication but is critical for oligomerization. Communications Biology, 2022, 5, 123.	4.4	30
8	Glycation modulates alpha-synuclein fibrillization kinetics: A sweet spot for inhibition. Journal of Biological Chemistry, 2022, 298, 101848.	3 . 4	12
9	Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Scientific Reports, 2022, 12, 3737.	3.3	6
10	Polarized \hat{l}_{\pm} -synuclein trafficking and transcytosis across brain endothelial cells via Rab7-decorated carriers. Fluids and Barriers of the CNS, 2022, 19, .	5.0	12
11	Structural Basis for Dityrosine-Mediated Inhibition of \hat{l} ±-Synuclein Fibrillization. Journal of the American Chemical Society, 2022, 144, 11949-11954.	13.7	6
12	Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response. Journal of Biological Chemistry, 2022, 298, 102142.	3.4	4
13	The optimal docking strength for reversibly tethered kinases. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
14	Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies. Molecules, 2022, 27, 4080.	3.8	17
15	Molecular characteristics of porcine alpha-synuclein splicing variants. Biochimie, 2021, 180, 121-133.	2.6	2
16	Multiple Protective Roles of Nanoliposomeâ€Incorporated Baicalein against Alphaâ€Synuclein Aggregates. Advanced Functional Materials, 2021, 31, 2007765.	14.9	14
17	Driving forces in amyloidosis: How does a light chain make a heavy heart?. Journal of Biological Chemistry, 2021, 296, 100785.	3.4	5
18	Breakdown of supersaturation barrier links protein folding to amyloid formation. Communications Biology, 2021, 4, 120.	4.4	39

#	Article	IF	CITATIONS
19	C subunit of the ATP synthase is an amyloidogenic calcium dependent channel-forming peptide with possible implications in mitochondrial permeability transition. Scientific Reports, 2021, 11, 8744.	3.3	16
20	In situ Subâ€Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. Small Methods, 2021, 5, e2001002.	8.6	11
21	Perâ€glycosylation of the Surfaceâ€Accessible Lysines: Oneâ€Pot Aqueous Route to Stabilized Proteins with Native Activity. ChemBioChem, 2021, 22, 2478-2485.	2.6	0
22	A multimethod approach for analyzing FapC fibrillation and determining mass per length. Biophysical Journal, 2021, 120, 2262-2275.	0.5	10
23	Identification of amyloidogenic proteins in the microbiomes of a rat Parkinson's disease model and wildâ€type rats. Protein Science, 2021, 30, 1854-1870.	7.6	5
24	Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. Journal of Biological Chemistry, 2021, 297, 100953.	3.4	9
25	Human Fibrinogen Inhibits Amyloid Assembly of Most Phenol-Soluble Modulins from <i>Staphylococcus aureus</i> . ACS Omega, 2021, 6, 21960-21970.	3.5	6
26	Ubiquitin forms conventional decorated micelle structures with sodium dodecyl sulfate at saturation. Journal of Colloid and Interface Science, 2021, 596, 233-244.	9.4	8
27	Cys-labeling kinetics of membrane protein GlpG: a role for specific SDS binding and micelle changes?. Biophysical Journal, 2021, 120, 4115-4128.	0.5	4
28	AlphaFold: A Special Issue and A Special Time for Protein Science. Journal of Molecular Biology, 2021, 433, 167231.	4.2	15
29	Microfluidics and the quantification of biomolecular interactions. Current Opinion in Structural Biology, 2021, 70, 8-15.	5.7	18
30	Adsorption of azo dyes by a novel bio-nanocomposite based on whey protein nanofibrils and nano-clay: Equilibrium isotherm and kinetic modeling. Journal of Colloid and Interface Science, 2021, 602, 490-503.	9.4	74
31	How epigallocatechin gallate binds and assembles oligomeric forms of human alpha-synuclein. Journal of Biological Chemistry, 2021, 296, 100788.	3.4	12
32	A Triple Role for a Bilayer: Using Nanoliposomes to Cross and Protect Cellular Membranes. Journal of Membrane Biology, 2021, 254, 29-39.	2.1	0
33	The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. International Journal of Molecular Sciences, 2021, 22, 11594.	4.1	3
34	Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. Langmuir, 2021, 37, 13452-13459.	3.5	4
35	Lipid Peroxidation Products HNE and ONE Promote and Stabilize Alpha-Synuclein Oligomers by Chemical Modifications. Biochemistry, 2021, 60, 3644-3658.	2.5	13
36	A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm, 2021, 3, 100060.	3.8	12

#	Article	IF	Citations
37	Unfolding and partial refolding of a cellulase from the SDS-denatured state: From \hat{l}^2 -sheet to \hat{l}_{\pm} -helix and back. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129434.	2.4	18
38	The interactome of stabilized αâ€synuclein oligomers and neuronal proteins. FEBS Journal, 2020, 287, 2037-2054.	4.7	9
39	Novel noscapine derivatives stabilize the native state of insulin against fibrillation. International Journal of Biological Macromolecules, 2020, 147, 98-108.	7.5	15
40	A complete picture of protein unfolding and refolding in surfactants. Chemical Science, 2020, 11, 699-712.	7.4	51
41	Amyloid fibril inhibition, acceleration, or fragmentation; Are nano-based approaches advance in the right direction?. Nano Today, 2020, 35, 100983.	11.9	5
42	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299.	11.2	47
43	MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience, 2020, 13, 582488.	2.9	19
44	SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. Chemical Science, 2020, 11, 9141-9153.	7.4	13
45	Peroxynitrous acid (ONOOH) modifies the structure of anastellin and influences its capacity to polymerize fibronectin. Redox Biology, 2020, 36, 101631.	9.0	5
46	Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Progress in Retinal and Eye Research, 2020, 77, 100843.	15.5	48
47	Multi-Step Unfolding and Rearrangement of $\hat{l}\pm$ -Lactalbumin by SDS Revealed by Stopped-Flow SAXS. Frontiers in Molecular Biosciences, 2020, 7, 125.	3.5	14
48	Structures and mechanisms of formation of liprotides. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140505.	2.3	4
49	Inhibitors of $\hat{l}\pm$ -Synuclein Fibrillation and Oligomer Toxicity in <i>Rosa damascena</i> Powers of Flavonoids and Phenolic Glycosides. ACS Chemical Neuroscience, 2020, 11, 3161-3173.	3.5	15
50	Quantitating denaturation by formic acid: imperfect repeats are essential to the stability of the functional amyloid protein FapC. Journal of Biological Chemistry, 2020, 295, 13031-13046.	3.4	15
51	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. PLoS Computational Biology, 2020, 16, e1007767.	3.2	29
52	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie, 2020, 132, 16217-16224.	2.0	8
53	Peak Force Infrared–Kelvin Probe Force Microscopy. Angewandte Chemie - International Edition, 2020, 59, 16083-16090.	13.8	16
54	DIBMA nanodiscs keep α-synuclein folded. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183314.	2.6	12

#	Article	IF	CITATIONS
55	Predicted Loop Regions Promote Aggregation: A Study of Amyloidogenic Domains in the Functional Amyloid FapC. Journal of Molecular Biology, 2020, 432, 2232-2252.	4.2	23
56	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	38.1	345
57	Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. Small, 2020, 16, e1906674.	10.0	26
58	The status of the terminal regions of α-synuclein in different forms of aggregates during fibrillization. International Journal of Biological Macromolecules, 2020, 155, 543-550.	7.5	4
59	Amyloid Formation of α-Synuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. Langmuir, 2020, 36, 4671-4681.	3.5	18
60	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth., 2020, 16, e1007767.		0
61	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. , 2020, 16, e1007767.		0
62	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth., 2020, 16, e1007767.		0
63	The hydrophobic effect characterises the thermodynamic signature of amyloid fibril growth. , 2020, 16, e1007767.		0
64	Bacterial amphiphiles as amyloid inducers: Effect of Rhamnolipid and Lipopolysaccharide on FapC fibrillation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140263.	2.3	23
65	αâ€synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. Journal of Neurochemistry, 2019, 150, 522-534.	3.9	201
66	Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Biomolecules, 2019, 9, 659.	4.0	30
67	Alterations in Blood Monocyte Functions in Parkinson's Disease. Movement Disorders, 2019, 34, 1711-1721.	3.9	67
68	A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants. Frontiers in Plant Science, 2019, 10, 148.	3.6	13
69	Quartz Crystal Microbalances as Tools for Probing Protein–Membrane Interactions. Methods in Molecular Biology, 2019, 2003, 31-52.	0.9	7
70	Functional Amyloids. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033860.	5.5	200
71	Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels. Colloids and Interfaces, 2019, 3, 42.	2.1	5
72	Two conformationally distinct \hat{l}_{\pm} -synuclein oligomers share common epitopes and the ability to impair long-term potentiation. PLoS ONE, 2019, 14, e0213663.	2.5	31

#	Article	IF	CITATIONS
73	Conservation of the Amyloid Interactome Across Diverse Fibrillar Structures. Scientific Reports, 2019, 9, 3863.	3.3	13
74	Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and \hat{l}_{\pm} -Synuclein. ACS Nano, 2019, 13, 3243-3256.	14.6	51
75	Reducing the Amyloidogenicity of Functional Amyloid Protein FapC Increases Its Ability To Inhibit α-Synuclein Fibrillation. ACS Omega, 2019, 4, 4029-4039.	3.5	26
76	Molecular dynamics study of ACBP denaturation in alkyl sulfates demonstrates possible pathways of unfolding through fused surfactant clusters. Protein Engineering, Design and Selection, 2019, 32, 175-190.	2.1	13
77	Imperfect repeats in the functional amyloid protein FapC reduce the tendency to fragment during fibrillation. Protein Science, 2019, 28, 633-642.	7.6	36
78	Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 519-528.	2.3	17
79	Physical Determinants of Amyloid Assembly in Biofilm Formation. MBio, 2019, 10, .	4.1	66
80	Oleuropein derivatives from olive fruit extracts reduce $\hat{l}\pm$ -synuclein fibrillation and oligomer toxicity. Journal of Biological Chemistry, 2019, 294, 4215-4232.	3.4	55
81	In vitro and in silico assessment of the developability of a designed monoclonal antibody library. MAbs, 2019, 11, 388-400.	5.2	72
82	Bacterial Amyloids: Biogenesis and Biomaterials. Advances in Experimental Medicine and Biology, 2019, 1174, 113-159.	1.6	7
83	Using Liprotides to Deliver Cholesterol to the Plasma Membrane. Journal of Membrane Biology, 2018, 251, 581-592.	2.1	4
84	<i>Pseudomonas aeruginosa</i> rhamnolipid induces fibrillation of human αâ€synuclein and modulates its effect on biofilm formation. FEBS Letters, 2018, 592, 1484-1496.	2.8	9
85	Stabilizing vitamin D3 using the molten globule state of \hat{l}_{\pm} -lactalbumin. Journal of Dairy Science, 2018, 101, 1817-1826.	3.4	9
86	Early events in copper-ion catalyzed oxidation of \hat{l}_{\pm} -synuclein. Free Radical Biology and Medicine, 2018, 121, 38-50.	2.9	23
87	The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease. Nanoscale, 2018, 10, 9174-9185.	5.6	29
88	Corneal Dystrophy Mutations Drive Pathogenesis by Targeting TGFBIp Stability and Solubility in a Latent Amyloid-forming Domain. Journal of Molecular Biology, 2018, 430, 1116-1140.	4.2	17
89	Liprotides assist in folding of outer membrane proteins. Protein Science, 2018, 27, 451-462.	7.6	11
90	Dynamic content exchange between liprotides. Biophysical Chemistry, 2018, 233, 13-18.	2.8	3

#	Article	IF	Citations
91	Role of Charge and Hydrophobicity in Liprotide Formation: A Molecular Dynamics Study with Experimental Constraints. ChemBioChem, 2018, 19, 263-271.	2.6	11
92	Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids and Surfaces B: Biointerfaces, 2018, 161, 578-587.	5.0	36
93	Can a Charged Surfactant Unfold an Uncharged Protein?. Biophysical Journal, 2018, 115, 2081-2086.	0.5	20
94	The Sheaths of Methanospirillum Are Made of a New Type of Amyloid Protein. Frontiers in Microbiology, 2018, 9, 2729.	3.5	13
95	High-Quality Draft Genome Sequence of Sphaerisporangium cinnabarinum ATCC 31213. Genome Announcements, 2018, 6, .	0.8	0
96	The Use of Surfactants to Solubilise a Glucagon Analogue. Pharmaceutical Research, 2018, 35, 235.	3.5	6
97	Potent α-Synuclein Aggregation Inhibitors, Identified by High-Throughput Screening, Mainly Target the Monomeric State. Cell Chemical Biology, 2018, 25, 1389-1402.e9.	5.2	68
98	Protein Engineering Reveals Mechanisms of Functional Amyloid Formation in Pseudomonas aeruginosa Biofilms. Journal of Molecular Biology, 2018, 430, 3751-3763.	4.2	44
99	α-Synucleins from Animal Species Show Low Fibrillation Propensities and Weak Oligomer Membrane Disruption. Biochemistry, 2018, 57, 5145-5158.	2.5	15
100	ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 1-16.	3.0	257
101	Refolding of SDS-Unfolded Proteins by Nonionic Surfactants. Biophysical Journal, 2017, 112, 1609-1620.	0.5	43
102	Tailoring thermal treatment to form liprotide complexes between oleic acid and different proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 682-693.	2.3	3
103	Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic PathogenPseudomonas aeruginosa. Biochemistry, 2017, 56, 260-270.	2.5	6
104	αâ€Synuclein Oligomers: A Study in Diversity. Israel Journal of Chemistry, 2017, 57, 699-723.	2.3	16
105	The Changing Face of Aging: Highly Sulfated Glycosaminoglycans Induce Amyloid Formation in a Lattice Corneal Dystrophy Model Protein. Journal of Molecular Biology, 2017, 429, 2755-2764.	4.2	6
106	Glycolipid Biosurfactants Activate, Dimerize, and Stabilize <i>Thermomyces lanuginosus</i> Lipase in a pH-Dependent Fashion. Biochemistry, 2017, 56, 4256-4268.	2.5	12
107	Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophysical Journal, 2017, 113, 580-596.	0.5	20
108	Liprotides kill cancer cells by disrupting the plasma membrane. Scientific Reports, 2017, 7, 15129.	3.3	15

#	Article	IF	Citations
109	Biosurfactants and surfactants interacting with membranes and proteins: Same but different?. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 639-649.	2.6	171
110	Antibodies against the C-terminus of \hat{l}_{\pm} -synuclein modulate its fibrillation. Biophysical Chemistry, 2017, 220, 34-41.	2.8	29
111	Myoglobin and \hat{l}_{\pm} -Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS. Biophysical Journal, 2017, 113, 2621-2633.	0.5	29
112	A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nature Communications, 2017, 8, 263.	12.8	56
113	Weak and Saturable Protein–Surfactant Interactions in the Denaturation of Apo-α-Lactalbumin by Acidic and Lactonic Sophorolipid. Frontiers in Microbiology, 2016, 7, 1711.	3.5	14
114	Incorporation of βâ€Siliconâ€Î²3â€Amino Acids in the Antimicrobial Peptide Alamethicin Provides a 20â€Fold Increase in Membrane Permeabilization. Chemistry - A European Journal, 2016, 22, 8358-8367.	3.3	21
115	Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. Journal of Biological Chemistry, 2016, 291, 26540-26553.	3.4	7 5
116	Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape. Biochemistry, 2016, 55, 7123-7140.	2.5	4
117	Epigallocatechin Gallate Remodels Fibrils of Lattice Corneal Dystrophy Protein, Facilitating Proteolytic Degradation and Preventing Formation of Membrane-Permeabilizing Species. Biochemistry, 2016, 55, 2344-2357.	2.5	10
118	Liprotides made of α-lactalbumin and cis fatty acids form core–shell and multi-layer structures with a common membrane-targeting mechanism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 847-859.	2.3	20
119	Alpha-synuclein and familial variants affect the chain order and the thermotropic phase behavior of anionic lipid vesicles. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1206-1214.	2.3	16
120	Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes \hat{l} ±-synuclein in the unfolded conformation and inhibits aggregation. RSC Advances, 2016, 6, 85312-85323.	3.6	21
121	How Glycosaminoglycans Promote Fibrillation of Salmon Calcitonin. Journal of Biological Chemistry, 2016, 291, 16849-16862.	3.4	15
122	Using protein-fatty acid complexes to improve vitamin D stability. Journal of Dairy Science, 2016, 99, 7755-7767.	3.4	22
123	The neural chaperone proSAAS blocks \hat{l}_{\pm} -synuclein fibrillation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4708-15.	7.1	38
124	The transcriptional regulator GalR self-assembles to form highly regular tubular structures. Scientific Reports, 2016, 6, 27672.	3.3	2
125	\hat{l}_{\pm} -Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology. Journal of Neuroinflammation, 2016, 13, 74.	7.2	35
126	A Complex Dance: The Importance of Glycosaminoglycans and Zinc in the Aggregation of Human Prolactin. Biochemistry, 2016, 55, 3674-3684.	2.5	11

#	Article	IF	Citations
127	Topological constraints and modular structure in the folding and functional motions of GlpG, an intramembrane protease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2098-2103.	7.1	21
128	Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. Journal of Pharmaceutical Sciences, 2016, 105, 1376-1386.	3.3	34
129	Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11. Journal of the American Chemical Society, 2016, 138, 402-407.	13.7	82
130	The Compact and Biologically Relevant Structure of Inter- \hat{l}_{\pm} -inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations. Journal of Biological Chemistry, 2016, 291, 4658-4670.	3.4	7
131	Near-complete 1H, 13C, 15N resonance assignments of dimethylsulfoxide-denatured TGFBIp FAS1-4 A546T. Biomolecular NMR Assignments, 2016, 10, 25-29.	0.8	2
132	Formation and Characterization of \hat{l}_{\pm} -Synuclein Oligomers. Methods in Molecular Biology, 2016, 1345, 133-150.	0.9	36
133	A Monte Carlo Study of the Early Steps of Functional Amyloid Formation. PLoS ONE, 2016, 11, e0146096.	2.5	9
134	The length distribution of frangible biofilaments. Journal of Chemical Physics, 2015, 143, 164901.	3.0	19
135	A monomer-trimer model supports intermittent glucagon fibril growth. Scientific Reports, 2015, 5, 9005.	3.3	6
136	Sucrose prevents protein fibrillation through compaction of the tertiary structure but hardly affects the secondary structure. Proteins: Structure, Function and Bioinformatics, 2015, 83, 2039-2051.	2.6	18
137	The anionic biosurfactant rhamnolipid does not denature industrial enzymes. Frontiers in Microbiology, 2015, 6, 292.	3.5	42
138	Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Frontiers in Microbiology, 2015, 6, 1099.	3.5	133
139	Cooperative folding of a polytopic \hat{l} ±-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7978-7983.	7.1	60
140	Promoting protein self-association in non-glycosylated Thermomyces lanuginosus lipase based on crystal lattice contacts. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1914-1921.	2.3	3
141	The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids. Journal of Biological Chemistry, 2015, 290, 20590-20600.	3.4	36
142	Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases?. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1897-1907.	2.6	91
143	Close encounters of the greasy kind. Nature Chemical Biology, 2015, 11, 176-177.	8.0	3
144	Structure of a Functional Amyloid Protein Subunit Computed Using Sequence Variation. Journal of the American Chemical Society, 2015, 137, 22-25.	13.7	98

#	Article	IF	Citations
145	Proteins in a brave new surfactant world. Current Opinion in Colloid and Interface Science, 2015, 20, 161-169.	7.4	63
146	The Use of Liprotides To Stabilize and Transport Hydrophobic Molecules. Biochemistry, 2015, 54, 4815-4823.	2.5	16
147	The natural, peptaibolic peptide SPF-5506-A 4 adopts a \hat{l}^2 -bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 882-889.	2.3	10
148	Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics. Nanoscale, 2015, 7, 19627-19640.	5.6	29
149	Scaffolded multimers of hIAPP20–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP20–29 peptide fragment. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1890-1897.	2.3	11
150	Folding energetics and oligomerization of polytopic \hat{l}_{\pm} -helical transmembrane proteins. Archives of Biochemistry and Biophysics, 2014, 564, 281-296.	3.0	27
151	Membrane protein folding and stability. Archives of Biochemistry and Biophysics, 2014, 564, 262-264.	3.0	5
152	Bacterial RTX Toxins Allow Acute ATP Release from Human Erythrocytes Directly through the Toxin Pore. Journal of Biological Chemistry, 2014, 289, 19098-19109.	3.4	54
153	Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (<i>TGFBI</i>) gene. Proteomics - Clinical Applications, 2014, 8, 168-177.	1.6	24
154	The Antimicrobial Mechanism of Action of Epsilon-Poly- <scp>l</scp> -Lysine. Applied and Environmental Microbiology, 2014, 80, 7758-7770.	3.1	218
155	The Nâ€terminus of αâ€synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS Letters, 2014, 588, 497-502.	2.8	102
156	Coâ€existence of Two Different αâ€Synuclein Oligomers with Different Core Structures Determined by Hydrogen/Deuterium Exchange Mass Spectrometry. Angewandte Chemie - International Edition, 2014, 53, 7560-7563.	13.8	103
157	Folding of outer membrane protein A in the anionic biosurfactant rhamnolipid. FEBS Letters, 2014, 588, 1955-1960.	2.8	29
158	Generic Structures of Cytotoxic Liprotides: Nanoâ€Sized Complexes with Oleic Acid Cores and Shells of Disordered Proteins. ChemBioChem, 2014, 15, 2693-2702.	2.6	37
159	Denaturation of α-lactalbumin and myoglobin by the anionic biosurfactant rhamnolipid. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2338-2345.	2.3	28
160	The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibrillation Propensity and Fibril Morphology. Biochemistry, 2014, 53, 6968-6980.	2.5	33
161	Lowâ€Resolution Structures of OmpAâ <ddm 15,="" 2014,="" 2113-2124.<="" chembiochem,="" complexes.="" protein–detergent="" td=""><td>2.6</td><td>22</td></ddm>	2.6	22
162	How Epigallocatechin Gallate Can Inhibit α-Synuclein Oligomer Toxicity in Vitro. Journal of Biological Chemistry, 2014, 289, 21299-21310.	3.4	172

#	Article	IF	CITATIONS
163	The Role of Stable α-Synuclein Oligomers in the Molecular Events Underlying Amyloid Formation. Journal of the American Chemical Society, 2014, 136, 3859-3868.	13.7	218
164	High Stability and Cooperative Unfolding of α-Synuclein Oligomers. Biochemistry, 2014, 53, 6252-6263.	2.5	67
165	Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nature Communications, 2014, 5, 3254.	12.8	134
166	Oligomers of α-synuclein: picking the culprit in the line-up. Essays in Biochemistry, 2014, 56, 137-148.	4.7	14
167	Proliferation of amyloid- \hat{l}^2 42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-9763.	7.1	1,162
168	Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2812-2822.	2.3	33
169	Folding of outer membrane proteins. Archives of Biochemistry and Biophysics, 2013, 531, 34-43.	3.0	67
170	Coexistence of ribbon and helical fibrils originating from hIAPP _{20â€"29} revealed by quantitative nanomechanical atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2798-2803.	7.1	104
171	Off-pathway aggregation can inhibit fibrillation at high protein concentrations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 677-687.	2.3	12
172	Protein–fatty acid complexes: biochemistry, biophysics and function. FEBS Journal, 2013, 280, 1733-1749.	4.7	44
173	Animal Models of Amyloid Diseases. , 2013, , 245-262.		0
174	Expression of Fap amyloids in <i><scp>P</scp>seudomonas aeruginosa</i> , <i><scp>P</scp>.Âfluorescens,</i> and <i><scp>P</scp>.Âputida</i> results in aggregation and increased biofilm formation. MicrobiologyOpen, 2013, 2, 365-382.	3.0	130
175	Wildtype and A30P Mutant Alpha-Synuclein Form Different Fibril Structures. PLoS ONE, 2013, 8, e67713.	2.5	48
176	Evolutionary Insight into the Functional Amyloids of the Pseudomonads. PLoS ONE, 2013, 8, e76630.	2.5	56
177	Polymorphic Fibrillation of the Destabilized Fourth Fasciclin-1 Domain Mutant A546T of the Transforming Growth Factor-Î ² -induced Protein (TGFBIp) Occurs through Multiple Pathways with Different Oligomeric Intermediates. Journal of Biological Chemistry, 2012, 287, 34730-34742.	3.4	21
178	The Role of Proteins in Biosilicification. Scientifica, 2012, 2012, 1-22.	1.7	46
179	Multiple Roles of Heparin in the Aggregation of p25î±. Journal of Molecular Biology, 2012, 421, 601-615.	4.2	20
180	Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 274-285.	2.3	14

#	Article	IF	CITATIONS
181	A Kinetic Analysis of the Folding and Unfolding of OmpA in Urea and Guanidinium Chloride: Single and Parallel Pathways. Biochemistry, 2012, 51, 8371-8383.	2.5	36
182	Cyclodextrin-Scaffolded Alamethicin with Remarkably Efficient Membrane Permeabilizing Properties and Membrane Current Conductance. Journal of Physical Chemistry B, 2012, 116, 7652-7659.	2.6	28
183	Curli Functional Amyloid Systems Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Structure. PLoS ONE, 2012, 7, e51274.	2.5	124
184	N for AsN – O for StrOcture? A strand–loop–strand motif for prokaryotic Oâ€glycosylation. Molecular Microbiology, 2012, 83, 879-883.	2.5	1
185	Mapping out the multistage fibrillation of glucagon. FEBS Journal, 2012, 279, 752-765.	4.7	30
186	The neuroendocrine peptide 7B2 prevents neurodegenerative diseaseâ€related protein aggregation. FASEB Journal, 2012, 26, 752.6.	0.5	0
187	Fibrillation of the Major Curli Subunit CsgA under a Wide Range of Conditions Implies a Robust Design of Aggregation. Biochemistry, 2011, 50, 8281-8290.	2.5	89
188	Proteinâ€"surfactant interactions: A tale of many states. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 562-591.	2.3	482
189	Mechanical Stress Affects Glucagon Fibrillation Kinetics and Fibril Structure. Langmuir, 2011, 27, 12539-12549.	3.5	27
190	Assays for α-synuclein aggregation. Methods, 2011, 53, 295-305.	3.8	98
190	Assays for α-synuclein aggregation. Methods, 2011, 53, 295-305. Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209.	3.8	98
191	Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209. Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochimica Et Biophysica	3.3	5
191 192	Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209. Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 713-723. Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth	3.3 2.3	5 65
191 192 193	Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209. Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 713-723. Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth FAS1 Domain of TGFBIp. Journal of Biological Chemistry, 2011, 286, 4951-4958. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proceedings of the National Academy of Sciences of the United States of America, 2011,	3.3 2.3 3.4	5 65 55
191 192 193	Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209. Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 713-723. Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth FAS1 Domain of TGFBIp. Journal of Biological Chemistry, 2011, 286, 4951-4958. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3246-3251. Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. Protein	3.3 2.3 3.4 7.1	5 65 55 222
191 192 193 194	Assembling Good Amyloid: Some Structures at Last. Structure, 2011, 19, 1207-1209. Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 713-723. Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth FAS1 Domain of TGFBIp. Journal of Biological Chemistry, 2011, 286, 4951-4958. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3246-3251. Mapping the folding pathway of the transmembrane protein DsbB by protein engineering. Protein Engineering, Design and Selection, 2011, 24, 139-149. Amyloid Formation in Surfactants and Alcohols: Membrane Mimetics or Structural Switchers?.	3.3 2.3 3.4 7.1 2.1	5 65 55 222 30

#	Article	IF	Citations
199	Divorcing folding from function: How acylation affects the membrane-perturbing properties of an antimicrobial peptide. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 806-820.	2.3	21
200	Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Analytical Biochemistry, 2010, 400, 270-281.	2.4	163
201	An ${\rm A\hat{l}^2}$ concatemer with altered aggregation propensities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2025-2035.	2.3	1
202	Amyloid structure $\hat{a} \in \text{``one but not the same: the many levels of fibrillar polymorphism. FEBS Journal, 2010, 277, 4591-4601.}$	4.7	101
203	Functional amyloid in <i>Pseudomonas</i> . Molecular Microbiology, 2010, 77, 1009-1020.	2.5	256
204	Stop-and-go kinetics in amyloid fibrillation. Nature Precedings, 2010, , .	0.1	2
205	Functional amyloid. Prion, 2010, 4, 256-264.	1.8	98
206	Pardaxin Permeabilizes Vesicles More Efficiently by Pore Formation than by Disruption. Biophysical Journal, 2010, 98, 576-585.	0.5	43
207	Membrane Interactions of Novicidin, a Novel Antimicrobial Peptide: Phosphatidylglycerol Promotes Bilayer Insertion. Journal of Physical Chemistry B, 2010, 114, 11053-11060.	2.6	25
208	Glucagon Fibril Polymorphism Reflects Differences in Protofilament Backbone Structure. Journal of Molecular Biology, 2010, 397, 932-946.	4.2	55
209	The Interaction of Equine Lysozyme:Oleic Acid Complexes with Lipid Membranes Suggests a Cargo Off-Loading Mechanism. Journal of Molecular Biology, 2010, 398, 351-361.	4.2	54
210	SDS-Induced Fibrillation of $\hat{l}\pm$ -Synuclein: An Alternative Fibrillation Pathway. Journal of Molecular Biology, 2010, 401, 115-133.	4.2	182
211	Interaction and Stability of Mixed Micelle and Monolayer of Nonionic and Cationic Surfactant Mixtures. Journal of Dispersion Science and Technology, 2009, 30, 1050-1058.	2.4	24
212	Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria. Applied and Environmental Microbiology, 2009, 75, 4101-4110.	3.1	66
213	Unique Identification of Supramolecular Structures in Amyloid Fibrils by Solid tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 2118-2121.	13.8	195
214	Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants. Biopolymers, 2009, 91, 221-231.	2.4	28
215	Interactions and influence of α-cyclodextrin on the aggregation and interfacial properties of mixtures of nonionic and zwitterionic surfactants. Colloid and Polymer Science, 2009, 287, 1243-1252.	2.1	18
216	α-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. Journal of Colloid and Interface Science, 2009, 329, 273-283.	9.4	105

#	Article	IF	CITATIONS
217	Kinetic partitioning between aggregation and vesicle permeabilization by modified ADan. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 84-93.	2.3	12
218	Correspondence between anomalous m- and \hat{l} °Cp-values in protein folding. Protein Science, 2009, 13, 3253-3263.	7.6	24
219	Synthesis of a Ketomethylene Isostere of the Fibrillating Peptide SNNFGAILSS. Journal of Organic Chemistry, 2009, 74, 7955-7957.	3.2	10
220	How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP). Journal of Physical Chemistry B, 2009, 113, 13942-13952.	2.6	37
221	A SAXS Study of Glucagon Fibrillation. Journal of Molecular Biology, 2009, 387, 147-161.	4.2	145
222	The Role of Decorated SDS Micelles in Sub-CMC Protein Denaturation and Association. Journal of Molecular Biology, 2009, 391, 207-226.	4.2	130
223	Branching in Amyloid Fibril Growth. Biophysical Journal, 2009, 96, 1529-1536.	0.5	146
224	The Influence of Vesicle Size and Composition on α-Synuclein Structure and Stability. Biophysical Journal, 2009, 96, 2857-2870.	0.5	79
225	Structural basis for cyclodextrins' suppression of human growth hormone aggregation. Protein Science, 2009, 11, 1779-1787.	7.6	77
226	p25 $\hat{l}\pm$ is flexible but natively folded and binds tubulin with oligomeric stoichiometry. Protein Science, 2009, 14, 1396-1409.	7.6	40
227	Amyloidâ€"a state in many guises: Survival of the fittest fibril fold. Protein Science, 2008, 17, 2-10.	7.6	75
228	Differential adsorption of variants of the Thermomyces lanuginosus lipase on a hydrophobic surface suggests a role for local flexibility. Colloids and Surfaces B: Biointerfaces, 2008, 64, 223-228.	5.0	17
229	We find them here, we find them there: Functional bacterial amyloid. Cellular and Molecular Life Sciences, 2008, 65, 910-927.	5 . 4	162
230	Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism. Biopolymers, 2008, 89, 779-795.	2.4	15
231	Aggregation of S6 in a quasi-native state by sub-micellar SDS. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 400-414.	2.3	32
232	Global Study of Myoglobinâ^'Surfactant Interactions. Langmuir, 2008, 24, 399-407.	3 . 5	78
233	Interactions of \hat{I}^3 -Cyclodextrin with the Mixed Micelles of Anionic Surfactants and Their Inclusion Complexes Formation. Journal of Dispersion Science and Technology, 2008, 29, 885-890.	2.4	5
234	Influence of βâ€Cyclodextrin on the Mixed Micellization Process of Sodium Dodecyl Sulfate and Sodium Lauroyl Sarcosine and Formation of Inclusion Complexes. Journal of Dispersion Science and Technology, 2008, 29, 128-133.	2.4	6

#	Article	IF	Citations
235	Glucagon Amyloid-like Fibril Morphology Is Selected via Morphology-Dependent Growth Inhibition. Biochemistry, 2007, 46, 7314-7324.	2.5	52
236	Unfolding of Î ² -Sheet Proteins in SDS. Biophysical Journal, 2007, 92, 3674-3685.	0.5	116
237	Aggregation as the basis for complex behaviour of cutinase in different denaturants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 323-333.	2.3	9
238	Aggregation and fibrillation of bovine serum albumin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1128-1138.	2.3	219
239	Amyloid adhesins are abundant in natural biofilms. Environmental Microbiology, 2007, 9, 3077-3090.	3.8	291
240	Versatile Interactions of the Antimicrobial Peptide Novispirin with Detergents and Lipidsâ€. Biochemistry, 2006, 45, 481-497.	2.5	40
241	The Changing Face of Glucagon Fibrillation: Structural Polymorphism and Conformational Imprinting. Journal of Molecular Biology, 2006, 355, 501-523.	4.2	211
242	Interactions between anionic mixed micelles and \hat{l}_{\pm} -cyclodextrin and their inclusion complexes: conductivity, NMR and fluorescence study. Colloid and Polymer Science, 2006, 284, 916-926.	2.1	23
243	Conformational detours during folding of a collapsed state. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1750, 146-153.	2.3	5
244	Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology, 2005, 57, 326-346.	2.5	132
245	Synergistic behavior of sodiumdodecylsulfate and 1,2-diheptanoyl-sn- glycero-3-phosphocholine in an aqueous medium: interfacial and bulk behavior. Colloid and Polymer Science, 2005, 283, 1219-1225.	2.1	7
246	Antagonism, non-native interactions and non-two-state folding in S6 revealed by double-mutant cycle analysis. Protein Engineering, Design and Selection, 2005, 18, 547-557.	2.1	7
247	Activation, Inhibition, and Destabilization of Thermomyces lanuginosus Lipase by Detergents. Biochemistry, 2005, 44, 1719-1730.	2.5	132
248	Transient formation of nano-crystalline structures during fibrillation of an $\hat{Al^2}$ -like peptide. Protein Science, 2004, 13, 1417-1421.	7.6	13
249	Modulation of S6 Fibrillation by Unfolding Rates and Gatekeeper Residues. Journal of Molecular Biology, 2004, 341, 575-588.	4.2	115
250	Folding of DsbB in Mixed Micelles: A Kinetic Analysis of the Stability of a Bacterial Membrane Protein. Journal of Molecular Biology, 2003, 330, 641-649.	4.2	105
251	Burst-phase expansion of native protein prior to global unfolding in SDS. Journal of Molecular Biology, 2002, 315, 1231-1240.	4.2	73
252	Conformational plasticity in folding of the split $\hat{l}^2-\hat{l}\pm\hat{l}^2$ protein S6: evidence for burst-phase disruption of the native state 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2002, 317, 613-627.	4.2	96

#	Article	IF	CITATIONS
253	Protein Unfolding in Detergents: Effect of Micelle Structure, Ionic Strength, pH, and Temperature. Biophysical Journal, 2002, 83, 2219-2230.	0.5	263
254	A simple way to measure protein refolding rates in water. Journal of Molecular Biology, 2001, 313, 479-483.	4.2	40
255	Electrostatics in the active site of an alpha-amylase. FEBS Journal, 1999, 264, 816-824.	0.2	63
256	A comparative study of the unfolding of the endoglucanase Cel45 from <i>Humicola insolens</i> in denaturant and surfactant. Protein Science, 1999, 8, 1878-1887.	7.6	52
257	Structural Changes in the Transition State of Protein Folding:  Alternative Interpretations of Curved Chevron Plots. Biochemistry, 1999, 38, 6499-6511.	2.5	184
258	Reduction in the amount of 8-hydroxy-2'-deoxyguanosine in the DNA of SV40-transformed human fibroblasts as compared with normal cells in culture. FEBS Letters, 1993, 318, 186-188.	2.8	7