Longsheng Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of LiFâ€rich Cathodeâ€Electrolyte Interphase by Electrolyte Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	90
2	Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nature Nanotechnology, 2022, 17, 269-277.	31.5	69
3	Formation of LiFâ€rich Cathodeâ€Electrolyte Interphase by Electrolyte Reduction. Angewandte Chemie, 2022, 134, .	2.0	16
4	Ammonium enables reversible aqueous Zn battery chemistries by tailoring the interphase. One Earth, 2022, 5, 413-421.	6.8	10
5	Nanofiber-Based Oxygen Reduction Electrocatalysts with Improved Mass Transfer Kinetics in a Meso-Porous Structure and Enhanced Reaction Kinetics by Confined Fe and Fe3C Particles for Anion-Exchange Membrane Fuel Cells. Energies, 2022, 15, 4029.	3.1	1
6	Highâ€Energy Aqueous Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 11943-11948.	13.8	100
7	Highâ€Energy Aqueous Sodiumâ€lon Batteries. Angewandte Chemie, 2021, 133, 12050-12055.	2.0	13
8	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie, 2021, 133, 13145-13151.	2.0	16
9	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie - International Edition, 2021, 60, 13035-13041.	13.8	239
10	Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature Nanotechnology, 2021, 16, 902-910.	31.5	560
11	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 18845-18851.	13.8	150
12	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie, 2021, 133, 18993-18999.	2.0	11
13	Solvation Structure Design for Aqueous Zn Metal Batteries. Journal of the American Chemical Society, 2020, 142, 21404-21409.	13.7	680
14	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	21.0	156
15	Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction. Nature Communications, 2020, 11, 2638.	12.8	71
16	Waterâ€Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage. Small, 2020, 16, e2000741.	10.0	34
17	Critical Factors Dictating Reversibility of the Zinc Metal Anode. Energy and Environmental Materials, 2020, 3, 516-521.	12.8	110
18	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie. 2020. 132. 19454-19458.	2.0	30

2

LONGSHENG CAO

#	Article	IF	CITATIONS
19	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 19292-19296.	13.8	287
20	Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule, 2019, 3, 2550-2564.	24.0	167
21	Anchoring ultrafine Pt nanoparticles on the 3D hierarchical self-assembly of graphene/functionalized carbon black as a highly efficient oxygen reduction catalyst for PEMFCs. Journal of Materials Chemistry A, 2018, 6, 15074-15082.	10.3	50
22	Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction. Frontiers in Energy, 2017, 11, 260-267.	2.3	17
23	Enhancing the Oxygen Reduction Reaction Performance by Modifying the Surface of Platinum Nanoparticles. ChemElectroChem, 2016, 3, 309-317.	3.4	14
24	Preparation of hollow PtCu nanoparticles as high-performance electrocatalysts for oxygen reduction reaction in the absence of a surfactant. RSC Advances, 2016, 6, 39993-40001.	3.6	23
25	Large faceted Pd nanocrystals supported small Pt nanoparticles as highly durable electrocatalysts for oxygen reduction. Journal of Power Sources, 2016, 326, 23-34.	7.8	16
26	Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes. Journal of Power Sources, 2016, 329, 347-354.	7.8	28