## Till F M Andlauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792663/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Fatigue, depression, and pain in multiple sclerosis: How neuroinflammation translates into<br>dysfunctional reward processing and anhedonic symptoms. Multiple Sclerosis Journal, 2022, 28,<br>1020-1027.                                              | 1.4 | 37        |
| 2  | Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects. Psychological<br>Medicine, 2022, 52, 1069-1079.                                                                                                                      | 2.7 | 10        |
| 3  | Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders.<br>Biological Psychiatry, 2022, 91, 102-117.                                                                                                              | 0.7 | 61        |
| 4  | <i>Cis</i> -epistasis at the <i>LPA</i> locus and risk of cardiovascular diseases. Cardiovascular<br>Research, 2022, 118, 1088-1102.                                                                                                                   | 1.8 | 14        |
| 5  | GWAS meta-analysis followed by Mendelian randomization revealed potential control mechanisms for circulating α-Klotho levels. Human Molecular Genetics, 2022, 31, 792-802.                                                                             | 1.4 | 5         |
| 6  | Gray matter atrophy in relapsing-remitting multiple sclerosis is associated with white matter lesions in connecting fibers. Multiple Sclerosis Journal, 2022, 28, 900-909.                                                                             | 1.4 | 4         |
| 7  | Genetic risk for psychiatric illness is associated with the number of hospitalizations of bipolar disorder patients. Journal of Affective Disorders, 2022, 296, 532-540.                                                                               | 2.0 | 6         |
| 8  | Investigating the phenotypic and genetic associations between personality traits and suicidal behavior<br>across major mental health diagnoses. European Archives of Psychiatry and Clinical Neuroscience,<br>2022, , 1.                               | 1.8 | 2         |
| 9  | A multiâ€informant and multiâ€polygenic approach to understanding predictors of peer victimisation in<br>childhood and adolescence. JCPP Advances, 2022, 2, .                                                                                          | 1.4 | 3         |
| 10 | Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Molecular Psychiatry, 2021, 26, 3004-3017.                                                                                  | 4.1 | 56        |
| 11 | Childhood maltreatment and cognitive functioning: the role of depression, parental education, and polygenic predisposition. Neuropsychopharmacology, 2021, 46, 891-899.                                                                                | 2.8 | 17        |
| 12 | Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Molecular Psychiatry, 2021, 26, 1286-1298.                                                                                                      | 4.1 | 33        |
| 13 | Interaction of developmental factors and ordinary stressful life events on brain structure in adults.<br>NeuroImage: Clinical, 2021, 30, 102683.                                                                                                       | 1.4 | 5         |
| 14 | Clinical and genetic differences between bipolar disorder type 1 and 2 in multiplex families.<br>Translational Psychiatry, 2021, 11, 31.                                                                                                               | 2.4 | 22        |
| 15 | "The Heidelberg Five―personality dimensions: Genomeâ€wide associations, polygenic risk for<br>neuroticism, and psychopathology 20 years after assessment. American Journal of Medical Genetics<br>Part B: Neuropsychiatric Genetics, 2021, 186, 77-89. | 1.1 | 6         |
| 16 | Genetic factors influencing a neurobiological substrate for psychiatric disorders. Translational Psychiatry, 2021, 11, 192.                                                                                                                            | 2.4 | 4         |
| 17 | The genetic basis of major depression. Psychological Medicine, 2021, 51, 2217-2230.                                                                                                                                                                    | 2.7 | 65        |
| 18 | Genetic Variation in <scp><i>WNT9B</i></scp> Increases Relapse Hazard in Multiple Sclerosis. Annals of Neurology, 2021, 89, 884-894.                                                                                                                   | 2.8 | 12        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple<br>Cohorts. Biological Psychiatry, 2021, 90, 611-620.                                                                          | 0.7 | 103       |
| 20 | Polygenic scores differentially predict developmental trajectories of subtypes of social withdrawal in childhood. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1320-1329.                    | 3.1 | 6         |
| 21 | A genome-wide association study of the longitudinal course of executive functions. Translational Psychiatry, 2021, 11, 386.                                                                                                  | 2.4 | 7         |
| 22 | Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning.<br>Neuropsychopharmacology, 2021, 46, 1895-1905.                                                                                | 2.8 | 24        |
| 23 | The Aryl Hydrocarbon Receptor–Dependent TGF-α/VEGF-B Ratio Correlates With Disease Subtype and<br>Prognosis in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .                              | 3.1 | 12        |
| 24 | Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021,<br>219, 659-669.                                                                                                     | 1.7 | 20        |
| 25 | The Genetic Architecture of Depression in Individuals of East Asian Ancestry. JAMA Psychiatry, 2021, 78, 1258.                                                                                                               | 6.0 | 88        |
| 26 | Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                    | 3.3 | 38        |
| 27 | Interplay between the genetics of personality traits, severe psychiatric disorders and COVID-19 host genetics in the susceptibility to SARS-CoV-2 infection. BJPsych Open, 2021, 7, e188.                                    | 0.3 | 1         |
| 28 | Polygenic risk scores across the extended psychosis spectrum. Translational Psychiatry, 2021, 11, 600.                                                                                                                       | 2.4 | 11        |
| 29 | Interplay between the Genetics of Personality Traits, severe Psychiatric Disorders, and COVID-19 Host<br>Genetics in the Susceptibility to SARS-CoV-2 Infection - ADDENDUM. BJPsych Open, 2021, 7, e206.                     | 0.3 | Ο         |
| 30 | Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With<br>Depression. Biological Psychiatry, 2020, 87, 419-430.                                                                   | 0.7 | 27        |
| 31 | The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000<br>Cases and 439,000 Controls. Biological Psychiatry, 2020, 88, 169-184.                                                   | 0.7 | 137       |
| 32 | Genotype-phenotype feasibility studies on khat abuse, traumatic experiences and psychosis in Ethiopia.<br>Psychiatric Genetics, 2020, 30, 34-38.                                                                             | 0.6 | 1         |
| 33 | Genetic determinants of the humoral immune response in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e827.                                                                                                  | 3.1 | 7         |
| 34 | Genetic comorbidity between major depression and cardioâ€metabolic traits, stratified by age at onset<br>of major depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020,<br>183, 309-330. | 1.1 | 33        |
| 35 | Gene Expression in Spontaneous Experimental Autoimmune Encephalomyelitis Is Linked to Human<br>Multiple Sclerosis Risk Genes. Frontiers in Immunology, 2020, 11, 2165.                                                       | 2.2 | 6         |
| 36 | Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Medicine, 2020, 18, 298.                                                                               | 2.3 | 11        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A phenome-wide association and Mendelian Randomisation study of polygenic risk for depression in<br>UK Biobank. Nature Communications, 2020, 11, 2301.                                                                        | 5.8 | 81        |
| 38 | S13. IMPACT OF POLYGENIC AND POLY-ENVIRONMENTAL RISK FACTORS ON A PSYCHOSIS RISK PHENOTYPE EXPLAINED THROUGH BRAIN STRUCTURE. Schizophrenia Bulletin, 2020, 46, S35-S36.                                                      | 2.3 | 0         |
| 39 | Minimal phenotyping yields genome-wide association signals of low specificity for major depression.<br>Nature Genetics, 2020, 52, 437-447.                                                                                    | 9.4 | 207       |
| 40 | Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study.<br>Molecular Autism, 2020, 11, 54.                                                                                            | 2.6 | 20        |
| 41 | Inner retinal layer thinning in radiologically isolated syndrome predicts conversion to multiple sclerosis. European Journal of Neurology, 2020, 27, 2217-2224.                                                               | 1.7 | 21        |
| 42 | DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLoS Computational Biology, 2020, 16, e1007616.                                                     | 1.5 | 54        |
| 43 | An Investigation of Psychosis Subgroups With Prognostic Validation and Exploration of Genetic Underpinnings. JAMA Psychiatry, 2020, 77, 523.                                                                                  | 6.0 | 39        |
| 44 | The role of environmental stress and DNA methylation in the longitudinal course of bipolar disorder.<br>International Journal of Bipolar Disorders, 2020, 8, 9.                                                               | 0.8 | 13        |
| 45 | Polygenic scores for psychiatric disease: from research tool to clinical application. Medizinische<br>Genetik, 2020, 32, 39-45.                                                                                               | 0.1 | 14        |
| 46 | A longitudinal approach to biological psychiatric research: The PsyCourse study. American Journal of<br>Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 89-102.                                                | 1.1 | 47        |
| 47 | Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study. Bipolar Disorders, 2019, 21, 68-75.                                                            | 1.1 | 20        |
| 48 | Treatment response classes in major depressive disorder identified by model-based clustering and validated by clinical prediction models. Translational Psychiatry, 2019, 9, 187.                                             | 2.4 | 51        |
| 49 | F96POLYGENIC RISK SCORE ANALYSIS OF TRAJECTORIES OF COGNITIVE PERFORMANCE IN PSYCHIATRIC PATIENTS. European Neuropsychopharmacology, 2019, 29, S1161.                                                                         | 0.3 | 0         |
| 50 | The genetic relationship between educational attainment and cognitive performance in major psychiatric disorders. Translational Psychiatry, 2019, 9, 210.                                                                     | 2.4 | 24        |
| 51 | Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.<br>Science, 2019, 365, .                                                                                                   | 6.0 | 710       |
| 52 | A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy<br>bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta<br>Neuropathologica, 2019, 138, 237-250. | 3.9 | 87        |
| 53 | Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophrenia Research, 2019, 208, 67-75.                                                       | 1.1 | 20        |
| 54 | A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nature Communications, 2019, 10, 2236.                                                               | 5.8 | 65        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cover Image, Volume 180B, Number 2, March 2019. American Journal of Medical Genetics Part B:<br>Neuropsychiatric Genetics, 2019, 180, i.                                                                                                                        | 1.1  | 0         |
| 56 | EFFECTS OF SCHIZOPHRENIA AND BIPOLAR POLYGENIC RISK SCORES ON AGE AT ONSET IN BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S967.                                                                                                               | 0.3  | 1         |
| 57 | Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 2019, 9, 77.                                                                                                                  | 2.4  | 82        |
| 58 | SU62THE ROLE OF ENVIRONMENTAL STRESS AND DNA METHYLATION IN THE LONGITUDINAL COURSE OF BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S1300-S1301.                                                                                               | 0.3  | 1         |
| 59 | Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders.<br>Cell, 2019, 179, 1469-1482.e11.                                                                                                                            | 13.5 | 935       |
| 60 | Association of Whole-Genome and NETRIN1 Signaling Pathway–Derived Polygenic Risk Scores for<br>Major Depressive Disorder and White Matter Microstructure in the UK Biobank. Biological Psychiatry:<br>Cognitive Neuroscience and Neuroimaging, 2019, 4, 91-100. | 1.1  | 16        |
| 61 | The influence of religious activity and polygenic schizophrenia risk on religious delusions in schizophrenia. Schizophrenia Research, 2019, 210, 255-261.                                                                                                       | 1.1  | 9         |
| 62 | Evidence for increased genetic risk load for major depression in patients assigned to<br>electroconvulsive therapy. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics,<br>2019, 180, 35-45.                                                | 1.1  | 18        |
| 63 | Effect of <i>HLA-DRB1</i> alleles and genetic variants on the development of neutralizing antibodies to interferon beta in the BEYOND and BENEFIT trials. Multiple Sclerosis Journal, 2019, 25, 565-573.                                                        | 1.4  | 9         |
| 64 | Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses. Cell Reports, 2018, 23, 1259-1274.                                                                                                                                         | 2.9  | 47        |
| 65 | Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.                                                                                                         | 9.4  | 2,224     |
| 66 | Does Childhood Trauma Moderate Polygenic Risk for Depression? A Meta-analysis of 5765 Subjects<br>From the Psychiatric Genomics Consortium. Biological Psychiatry, 2018, 84, 138-147.                                                                           | 0.7  | 87        |
| 67 | Exome sequencing in large, multiplex bipolar disorder families from Cuba. PLoS ONE, 2018, 13, e0205895.                                                                                                                                                         | 1.1  | 13        |
| 68 | Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.                                                                                                                                                  | 13.5 | 115       |
| 69 | Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .                                                                                                                                                                         | 6.0  | 1,085     |
| 70 | DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nature Communications, 2018, 9, 2397.                                                                                                                           | 5.8  | 147       |
| 71 | Genetic effects influencing risk for major depressive disorder in China and Europe. Translational<br>Psychiatry, 2017, 7, e1074-e1074.                                                                                                                          | 2.4  | 64        |
| 72 | Polygenic Risk For BIP, MDD, And SCZ In Andalusian Multiplex Families. European<br>Neuropsychopharmacology, 2017, 27, S385-S386.                                                                                                                                | 0.3  | 0         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Integrating Polygenic Allele Burden Information And Phenomic Data To Characterize Complex Disease<br>Trajectories In Severe Mental Illness. European Neuropsychopharmacology, 2017, 27, S406.                           | 0.3 | Ο         |
| 74 | POLYGENIC BURDEN ANALYSIS OF LONGITUDINAL CLUSTERS OF QUALITY OF LIFE AND FUNCTIONING IN PATIENTS WITH SEVERE MENTAL ILLNESS. European Neuropsychopharmacology, 2017, 27, S408-S409.                                    | 0.3 | 0         |
| 75 | Using Machine Learning To Build Individualized Prediction Models Of Future Quality Of Life In<br>Psychosis Patients. European Neuropsychopharmacology, 2017, 27, S464.                                                  | 0.3 | 0         |
| 76 | Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes. Scientific Reports, 2017, 7, 15351.                                                                      | 1.6 | 50        |
| 77 | Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biology, 2016, 14, e1002563.                                                    | 2.6 | 82        |
| 78 | Higher frequencies of HLA DQB1*05:01 and anti-glycosphingolipid antibodies in a cluster of severe<br>Guillain–Barré syndrome. Journal of Neurology, 2016, 263, 2105-2113.                                               | 1.8 | 17        |
| 79 | HLA Genetic Risk Burden in Multiple Sclerosis. JAMA Neurology, 2016, 73, 1500.                                                                                                                                          | 4.5 | 8         |
| 80 | Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Science Advances, 2016, 2, e1501678.                                                                                                  | 4.7 | 133       |
| 81 | Loss of the Coffin-Lowry syndrome associated gene <i>RSK2</i> alters ERK activity, synaptic function<br>and axonal transport in <i>Drosophila</i> motoneurons. DMM Disease Models and Mechanisms, 2015, 8,<br>1389-400. | 1.2 | 23        |
| 82 | Successful Replication of GWAS Hits for Multiple Sclerosis in 10,000 Germans Using the Exome Array.<br>Genetic Epidemiology, 2015, 39, 601-608.                                                                         | 0.6 | 15        |
| 83 | MS susceptibility is not affected by single nucleotide polymorphisms in the MMP9 gene. Journal of Neuroimmunology, 2015, 279, 46-49.                                                                                    | 1.1 | 7         |
| 84 | A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. ELife, 2015, 4, .                                                                                         | 2.8 | 26        |
| 85 | Drep-2 is a novel synaptic protein important for learning and memory. ELife, 2014, 3, .                                                                                                                                 | 2.8 | 39        |
| 86 | In Vivo Imaging of Drosophila Larval Neuromuscular Junctions to Study Synapse Assembly. Cold Spring<br>Harbor Protocols, 2012, 2012, pdb.top068577-pdb.top068577.                                                       | 0.2 | 13        |
| 87 | In Vivo Imaging of the <i>Drosophila</i> Larval Neuromuscular Junction. Cold Spring Harbor<br>Protocols, 2012, 2012, pdb.prot068593.                                                                                    | 0.2 | 18        |
| 88 | Quantitative Analysis of <i>Drosophila</i> Larval Neuromuscular Junction Morphology. Cold Spring<br>Harbor Protocols, 2012, 2012, pdb.prot068601.                                                                       | 0.2 | 29        |
| 89 | Building an Imaging Chamber for In Vivo Imaging of <i>Drosophila</i> Larvae. Cold Spring Harbor<br>Protocols, 2012, 2012, pdb.prot068585.                                                                               | 0.2 | 7         |
| 90 | Fighting the famine with an amine: synaptic strategies for smart search. Nature Neuroscience, 2011, 14, 124-126.                                                                                                        | 7.1 | 6         |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Piccolo Regulates the Dynamic Assembly of Presynaptic F-Actin. Journal of Neuroscience, 2011, 31, 14250-14263.                                                                                                     | 1.7 | 69        |
| 92 | Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila. Journal of Neuroscience, 2011, 31, 9696-9707.                                                                                       | 1.7 | 83        |
| 93 | PALS1 Is Essential for Retinal Pigment Epithelium Structure and Neural Retina Stratification. Journal of Neuroscience, 2011, 31, 17230-17241.                                                                      | 1.7 | 48        |
| 94 | Structural Long-Term Changes at Mushroom Body Input Synapses. Current Biology, 2010, 20, 1938-1944.                                                                                                                | 1.8 | 93        |
| 95 | The Irre Cell Recognition Module (IRM) Proteins. Journal of Neurogenetics, 2009, 23, 48-67.                                                                                                                        | 0.6 | 53        |
| 96 | A Nonsynonymous Mutation in PLCG2 Reduces the Risk of Alzheimer's Disease, Dementia with<br>Lewy-Bodies and Frontotemporal Dementia, and Increases the Likelihood of Longevity. SSRN Electronic<br>Journal, 0, , . | 0.4 | 0         |