Graham Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Science Immunology, 2022, 7, eabn3286.	11.9	15
2	Failures in thymus medulla regeneration during immune recovery cause tolerance loss and prime recipients for auto-GVHD. Journal of Experimental Medicine, 2022, 219, .	8.5	13
3	Gâ€CSF induces CD15 ⁺ CD14 ⁺ cells from granulocytes early in the physiological environment of pregnancy and the cancer immunosuppressive microenvironment. Clinical and Translational Immunology, 2022, 11, .	3.8	6
4	Active Module Identification From Multilayer Weighted Gene Co-Expression Networks: A Continuous Optimization Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2239-2248.	3.0	2
5	RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature, 2021, 589, 442-447.	27.8	52
6	The thymus medulla and its control of $\hat{I}\pm\hat{I}^2T$ cell development. Seminars in Immunopathology, 2021, 43, 15-27.	6.1	9
7	A novel method to identify Postâ€Aire stages of medullary thymic epithelial cell differentiation. European Journal of Immunology, 2021, 51, 311-318.	2.9	14
8	Non-Epithelial Stromal Cells in Thymus Development and Function. Frontiers in Immunology, 2021, 12, 634367.	4.8	12
9	Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Advances, 2021, 5, 99-112.	5.2	12
10	FOXN1 forms higher-order nuclear condensates displaced by mutations causing immunodeficiency. Science Advances, 2021, 7, eabj9247.	10.3	10
11	A population of proinflammatory T cells coexpresses $\hat{I}\pm\hat{I}^2$ and $\hat{I}^3\hat{I}$ T cell receptors in mice and humans. Journal of Experimental Medicine, 2020, 217, .	8.5	33
12	Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Frontiers in Immunology, 2020, 11, 1850.	4.8	9
13	Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Reports, 2020, 33, 108328.	6.4	50
14	Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nature Communications, 2020, 11, 2198.	12.8	44
15	Homeostatic Cytokines Drive Epigenetic Reprogramming of Activated T Cells into a "Naive-Memory― Phenotype. IScience, 2020, 23, 100989.	4.1	15
16	Generation and Regeneration of Thymic Epithelial Cells. Frontiers in Immunology, 2020, 11, 858.	4.8	27
17	Critical role of WNK1 in MYC-dependent early mouse thymocyte development. ELife, 2020, 9, .	6.0	7
18	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766

#	Article	IF	CITATIONS
19	CXCR4, but not CXCR3, drives CD8 ⁺ Tâ€cell entry into and migration through the murine bone marrow. European Journal of Immunology, 2019, 49, 576-589.	2.9	44
20	Rethinking Thymic Tolerance: Lessons from Mice. Trends in Immunology, 2019, 40, 279-291.	6.8	33
21	Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. ELife, 2019, 8, .	6.0	16
22	lgG Responses to Porins and Lipopolysaccharide within an Outer Membrane-Based Vaccine against Nontyphoidal <i>Salmonella</i> Develop at Discordant Rates. MBio, 2018, 9, .	4.1	31
23	T-cell egress from the thymus: Should I stay or should I go?. Journal of Leukocyte Biology, 2018, 104, 275-284.	3.3	41
24	Aire controls the recirculation of murine Foxp3 ⁺ regulatory T ells back to the thymus. European Journal of Immunology, 2018, 48, 844-854.	2.9	32
25	Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. Journal of Experimental Medicine, 2018, 215, 2984-2993.	8.5	22
26	Formation of the Intrathymic Dendritic Cell Pool Requires CCL21-Mediated Recruitment of CCR7+ Progenitors to the Thymus. Journal of Immunology, 2018, 201, 516-523.	0.8	24
27	Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis. Journal of Immunology, 2018, 201, 524-532.	0.8	15
28	Dynamic changes in intrathymic ILC populations during murine neonatal development. European Journal of Immunology, 2018, 48, 1481-1491.	2.9	40
29	Increased Production of IL-17A-Producing γδT Cells in the Thymus of Filaggrin-Deficient Mice. Frontiers in Immunology, 2018, 9, 988.	4.8	12
30	Invariant NKT Cells and Control of the Thymus Medulla. Journal of Immunology, 2018, 200, 3333-3339.	0.8	20
31	Thymic Epithelial Cells. Annual Review of Immunology, 2017, 35, 85-118.	21.8	282
32	Medullary Thymic epithelial cell progenitors: hidden in plain sight. Nature Reviews Immunology, 2017, 17, 348-348.	22.7	0
33	Generation of diversity in thymic epithelial cells. Nature Reviews Immunology, 2017, 17, 295-305.	22.7	158
34	A type 2 cytokine axis for thymus emigration. Journal of Experimental Medicine, 2017, 214, 2205-2216.	8.5	41
35	Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity. Journal of Immunology, 2017, 199, 1250-1260.	0.8	53
36	Progressive Changes in CXCR4 Expression That Define Thymocyte Positive Selection Are Dispensable For Both Innate and Conventional αβT-cell Development. Scientific Reports, 2017, 7, 5068.	3.3	21

#	Article	IF	CITATIONS
37	Redefining thymus medulla specialization for central tolerance. Journal of Experimental Medicine, 2017, 214, 3183-3195.	8.5	71
38	Thymic Microenvironments: Development, Organization, and Function. , 2016, , 390-399.		1
39	The thymus and rheumatology. Current Opinion in Rheumatology, 2016, 28, 189-195.	4.3	9
40	Affinity for self antigen selects Treg cells with distinct functional properties. Nature Immunology, 2016, 17, 1093-1101.	14.5	91
41	Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK ⁺ medullary epithelial progenitors. European Journal of Immunology, 2016, 46, 857-862.	2.9	48
42	Control of the thymic medulla and its influence on αβT ell development. Immunological Reviews, 2016, 271, 23-37.	6.0	25
43	Lymphotoxin β Receptor Controls T Cell Progenitor Entry to the Thymus. Journal of Immunology, 2016, 197, 2665-2672.	0.8	24
44	Context-Dependent Development of Lymphoid Stroma from Adult CD34+ Adventitial Progenitors. Cell Reports, 2016, 14, 2375-2388.	6.4	70
45	CCR7 Controls Thymus Recirculation, but Not Production and Emigration, of Foxp3 + T Cells. Cell Reports, 2016, 14, 1041-1048.	6.4	53
46	CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. European Journal of Immunology, 2015, 45, 574-583.	2.9	27
47	Border control: Anatomical origins of the thymus medulla. European Journal of Immunology, 2015, 45, 2203-2207.	2.9	6
48	Thymus medulla fosters generation of natural Treg cells, invariant γδT cells, and invariant NKT cells: What we learn from intrathymic migration. European Journal of Immunology, 2015, 45, 652-660.	2.9	41
49	Laying Bare the Nude Mouse Gene. Journal of Immunology, 2015, 194, 847-848.	0.8	2
50	Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release. Immunity, 2015, 42, 1087-1099.	14.3	85
51	Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development. Journal of Immunology, 2015, 195, 2675-2682.	0.8	42
52	Natural Th17 cells are critically regulated by functional medullary thymic microenvironments. Journal of Autoimmunity, 2015, 63, 13-22.	6.5	17
53	Co-ordination of intrathymic self-representation. Nature Immunology, 2015, 16, 895-896.	14.5	3
54	An Essential Role for Medullary Thymic Epithelial Cells during the Intrathymic Development of Invariant NKT Cells. Journal of Immunology, 2014, 192, 2659-2666.	0.8	81

#	Article	IF	CITATIONS
55	Evolving Strategies for Cancer and Autoimmunity: Back to the Future. Frontiers in Immunology, 2014, 5, 154.	4.8	4
56	Resolving <i>Salmonella</i> infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function. European Journal of Immunology, 2014, 44, 2318-2330.	2.9	11
57	Serial progression of cortical and medullary thymic epithelial microenvironments. European Journal of Immunology, 2014, 44, 16-22.	2.9	96
58	Differential Requirement for CCR4 and CCR7 during the Development of Innate and Adaptive αβT Cells in the Adult Thymus. Journal of Immunology, 2014, 193, 1204-1212.	0.8	65
59	The Primordial Thymus: Everything You Need Under One Roof. Immunity, 2014, 41, 178-180.	14.3	1
60	Generation of both cortical and <scp>A</scp> ire ⁺ medullary thymic epithelial compartments from <scp>CD</scp> 205 ⁺ progenitors. European Journal of Immunology, 2013, 43, 589-594.	2.9	111
61	Mechanisms of Thymus Medulla Development and Function. Current Topics in Microbiology and Immunology, 2013, 373, 19-47.	1.1	25
62	The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. Journal of Experimental Medicine, 2013, 210, 675-681.	8.5	166
63	Differential Requirement for CCR4 in the Maintenance but Not Establishment of the Invariant Vγ5+ Dendritic Epidermal T-Cell Pool. PLoS ONE, 2013, 8, e74019.	2.5	16
64	Cutting Edge: Lymphoid Tissue Inducer Cells Maintain Memory CD4 T Cells within Secondary Lymphoid Tissue. Journal of Immunology, 2012, 189, 2094-2098.	0.8	80
65	Mesenchymal Cells Regulate Retinoic Acid Receptor-Dependent Cortical Thymic Epithelial Cell Homeostasis. Journal of Immunology, 2012, 188, 4801-4809.	0.8	53
66	Developmentally Regulated Availability of RANKL and CD40 Ligand Reveals Distinct Mechanisms of Fetal and Adult Cross-Talk in the Thymus Medulla. Journal of Immunology, 2012, 189, 5519-5526.	0.8	70
67	CD248 expression on mesenchymal stromal cells is required for postâ€natal and infectionâ€dependent thymus remodelling and regeneration. FEBS Open Bio, 2012, 2, 187-190.	2.3	21
68	Lymphotoxin-β Receptor Signaling through NF-κB2-RelB Pathway Reprograms Adipocyte Precursors as Lymph Node Stromal Cells. Immunity, 2012, 37, 721-734.	14.3	127
69	Rank Signaling Links the Development of Invariant Î ³ δT Cell Progenitors and Aire+ Medullary Epithelium. Immunity, 2012, 36, 427-437.	14.3	152
70	Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends in Immunology, 2012, 33, 256-263.	6.8	307
71	Thymic Function Is Maintained during <i>Salmonella</i> -Induced Atrophy and Recovery. Journal of Immunology, 2012, 189, 4266-4274.	0.8	37
72	Lymphoid Tissue Inducer Cells: Pivotal Cells in the Evolution of CD4 Immunity and Tolerance?. Frontiers in Immunology, 2012, 3, 24.	4.8	21

#	Article	IF	CITATIONS
73	A novel method to allow noninvasive, longitudinal imaging of the murine immune system in vivo. Blood, 2012, 119, 2545-2551.	1.4	43
74	Lymphoid tissue inducer cells: innate cells critical for CD4 ⁺ T cell memory responses?. Annals of the New York Academy of Sciences, 2012, 1247, 1-15.	3.8	12
75	Normal T Cell Selection Occurs in CD205-Deficient Thymic Microenvironments. PLoS ONE, 2012, 7, e53416.	2.5	7
76	Wnt-4 Protects Thymic Epithelial Cells Against Dexamethasone-Induced Senescence. Rejuvenation Research, 2011, 14, 241-248.	1.8	46
77	Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science, 2011, 332, 600-603.	12.6	1,386
78	Mutation in the TCRÎ \pm subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRÎ \pm Î ² + T cells. Journal of Clinical Investigation, 2011, 121, 695-702.	8.2	86
79	OX40 and CD30 signals in CD4 ⁺ Tâ€cell effector and memory function: a distinct role for lymphoid tissue inducer cells in maintaining CD4 ⁺ Tâ€cell memory but not effector function. Immunological Reviews, 2011, 244, 134-148.	6.0	48
80	Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mechanisms of Ageing and Development, 2011, 132, 249-256.	4.6	31
81	CD117 ⁺ CD3 ^{â^'} CD56 ^{â^'} OX40L ^{high} cells express ILâ€22 and display an LTi phenotype in human secondary lymphoid tissues. European Journal of Immunology, 2011, 41, 1563-1572.	2.9	38
82	Abrogation of CD30 and OX40 signals prevents autoimmune disease in FoxP3-deficient mice. Journal of Experimental Medicine, 2011, 208, 1579-1584.	8.5	47
83	Clonal Analysis Reveals Uniformity in the Molecular Profile and Lineage Potential of CCR9+ and CCR9â^' Thymus-Settling Progenitors. Journal of Immunology, 2011, 186, 5227-5235.	0.8	15
84	Thymocyte Development. , 2011, , 1-23.		0
85	A distinct subset of podoplanin (gp38) expressing F4/80+ macrophages mediate phagocytosis and are induced following zymosan peritonitis. FEBS Letters, 2010, 584, 3955-3961.	2.8	40
86	Splenic stromal cells mediate ILâ€7 independent adult lymphoid tissue inducer cell survival. European Journal of Immunology, 2010, 40, 359-365.	2.9	11
87	The pericyte and stromal cell marker CD248 (endosialin) is required for efficient lymph node expansion. European Journal of Immunology, 2010, 40, 1884-1889.	2.9	33
88	Wnt4 and LAP2alpha as Pacemakers of Thymic Epithelial Senescence. PLoS ONE, 2010, 5, e10701.	2.5	58
89	Ontogeny of Stromal Organizer Cells during Lymph Node Development. Journal of Immunology, 2010, 184, 4521-4530.	0.8	116
90	Lymphoid Tissue Inducer Cells and the Evolution of CD4 Dependent High-Affinity Antibody Responses. Progress in Molecular Biology and Translational Science, 2010, 92, 159-174.	1.7	9

#	Article	IF	CITATIONS
91	Lymphotoxin Signals from Positively Selected Thymocytes Regulate the Terminal Differentiation of Medullary Thymic Epithelial Cells. Journal of Immunology, 2010, 185, 4769-4776.	0.8	127
92	CD30 Is Required for CCL21 Expression and CD4 T Cell Recruitment in the Absence of Lymphotoxin Signals. Journal of Immunology, 2009, 182, 4771-4775.	0.8	17
93	Enhanced selection of FoxP3 ⁺ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3306-3311.	7.1	48
94	The Survival of Memory CD4+ T Cells within the Gut Lamina Propria Requires OX40 and CD30 Signals. Journal of Immunology, 2009, 183, 5079-5084.	0.8	38
95	Transplantation of embryonic spleen tissue reveals a role for adult nonâ€lymphoid cells in initiating lymphoid tissue organization. European Journal of Immunology, 2009, 39, 280-289.	2.9	13
96	A roadmap for thymic epithelial cell development. European Journal of Immunology, 2009, 39, 1694-1699.	2.9	35
97	Synergistic OX40 and CD30 signals sustain CD8 ⁺ T cells during antigenic challenge. European Journal of Immunology, 2009, 39, 2120-2125.	2.9	11
98	Absence of thymus crosstalk in the fetus does not preclude hematopoietic induction of a functional thymus in the adult. European Journal of Immunology, 2009, 39, 2395-2402.	2.9	23
99	NK cells protect secondary lymphoid tissue from cytomegalovirus <i>via</i> a CD30â€dependent mechanism. European Journal of Immunology, 2009, 39, 2800-2808.	2.9	15
100	Roquin Differentiates the Specialized Functions of Duplicated T Cell Costimulatory Receptor Genes Cd28 and Icos. Immunity, 2009, 30, 228-241.	14.3	129
101	Checkpoints in the Development of Thymic Cortical Epithelial Cells. Journal of Immunology, 2009, 182, 130-137.	0.8	131
102	The Global Thymus Network: past, present and future. Trends in Immunology, 2009, 30, 191-192.	6.8	1
103	Sequential phases in the development of Aireâ€expressing medullary thymic epithelial cells involve distinct cellular input. European Journal of Immunology, 2008, 38, 942-947.	2.9	74
104	Heterogeneity of lymphoid tissue inducer cell populations present in embryonic and adult mouse lymphoid tissues. Immunology, 2008, 124, 166-174.	4.4	51
105	Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Seminars in Immunology, 2008, 20, 159-163.	5.6	20
106	Critical Synergy of CD30 and OX40 Signals in CD4 T Cell Homeostasis and Th1 Immunity to Salmonella. Journal of Immunology, 2008, 180, 2824-2829.	0.8	50
107	AIRE's CARD Revealed, a New Structure for Central Tolerance Provokes Transcriptional Plasticity. Journal of Biological Chemistry, 2008, 283, 1723-1731.	3.4	80
108	An Epithelial Progenitor Pool Regulates Thymus Growth. Journal of Immunology, 2008, 181, 6101-6108.	0.8	66

#	Article	IF	CITATIONS
109	Ly49H+ NK Cells Migrate to and Protect Splenic White Pulp Stroma from Murine Cytomegalovirus Infection. Journal of Immunology, 2008, 180, 6768-6776.	0.8	42
110	Involvement of CCR9 at multiple stages of adult T lymphopoiesis. Journal of Leukocyte Biology, 2008, 83, 156-164.	3.3	27
111	TSCOT + Thymic Epithelial Cell-Mediated Sensitive CD4 Tolerance by Direct Presentation. PLoS Biology, 2008, 6, e191.	5.6	16
112	Preparation of 2-dGuo-Treated Thymus Organ Cultures. Journal of Visualized Experiments, 2008, , .	0.3	8
113	Reaggregate Thymus Cultures. Journal of Visualized Experiments, 2008, , .	0.3	16
114	Bringing the Thymus to the Bench. Journal of Immunology, 2008, 181, 7435-7436.	0.8	5
115	Role of CD30 in B/T Segregation in the Spleen. Journal of Immunology, 2007, 179, 7535-7543.	0.8	31
116	Function of CD4+CD3â^' cells in relation to B- and T-zone stroma in spleen. Blood, 2007, 109, 1602-1610.	1.4	78
117	PDGFRα-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood, 2007, 109, 954-960.	1.4	94
118	Lymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis. Blood, 2007, 110, 1950-1959.	1.4	56
119	RANK signals from CD4+3â [~] ' inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. Journal of Experimental Medicine, 2007, 204, 1267-1272.	8.5	434
120	EphrinB1â€EphB signaling regulates thymocyteâ€epithelium interactions involved in functional T cell development. European Journal of Immunology, 2007, 37, 2596-2605.	2.9	50
121	Chemokine receptor expression defines heterogeneity in the earliest thymic migrants. European Journal of Immunology, 2007, 37, 2090-2096.	2.9	37
122	Redefining epithelial progenitor potential in the developing thymus. European Journal of Immunology, 2007, 37, 2411-2418.	2.9	86
123	The role of lymphoid tissue inducer cells in splenic white pulp development. European Journal of Immunology, 2007, 37, 3240-3245.	2.9	51
124	Generating intrathymic microenvironments to establish T-cell tolerance. Nature Reviews Immunology, 2007, 7, 954-963.	22.7	162
125	CD248/Endosialin is dynamically expressed on a subset of stromal cells during lymphoid tissue development, splenic remodeling and repair. FEBS Letters, 2007, 581, 3550-3556.	2.8	46
126	Investigating Central Tolerance With Reaggregate Thymus Organ Cultures. Methods in Molecular Biology, 2007, 380, 185-196.	0.9	11

#	Article	IF	CITATIONS
127	Fetal Thymus Organ Culture: Figure 1 Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4808.	0.3	36
128	Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature, 2006, 441, 988-991.	27.8	292
129	Thymus colonization: a shared responsibility. Blood, 2006, 108, 2497-2497.	1.4	1
130	Establishment and functioning of intrathymic microenvironments. Immunological Reviews, 2006, 209, 10-27.	6.0	96
131	The thymus and T-cell commitment: the right niche for Notch?. Nature Reviews Immunology, 2006, 6, 551-555.	22.7	43
132	Overexpression of ICAT highlights a rolefor catenin-mediated canonical Wnt signalling in early T cell development. European Journal of Immunology, 2006, 36, 2376-2383.	2.9	54
133	Neonatal and Adult CD4+CD3â^' Cells Share Similar Gene Expression Profile, and Neonatal Cells Up-Regulate OX40 Ligand in Response to TL1A (TNFSF15). Journal of Immunology, 2006, 177, 3074-3081.	0.8	81
134	T/B lineage choice occurs prior to intrathymic Notch signaling. Blood, 2005, 106, 886-892.	1.4	72
135	Phenotypic Characterization of CD3â^'7+Cells in Developing Human Intestine and an Analysis of Their Ability to Differentiate into T Cells. Journal of Immunology, 2005, 174, 5414-5422.	0.8	30
136	OX40 Ligand and CD30 Ligand Are Expressed on Adult but Not Neonatal CD4+CD3â ^{~?} Inducer Cells: Evidence That IL-7 Signals Regulate CD30 Ligand but Not OX40 Ligand Expression. Journal of Immunology, 2005, 174, 6686-6691.	0.8	74
137	Expression of the Ian family of putative GTPases during T cell development and description of an Ian with three sets of GTP/GDP-binding motifs. International Immunology, 2005, 17, 1257-1268.	4.0	27
138	Development of functional thymic epithelial cells occurs independently of lymphostromal interactions. Mechanisms of Development, 2005, 122, 1294-1299.	1.7	34
139	A Stroma-Derived Defect in NF-κB2â"/â^ Mice Causes Impaired Lymph Node Development and Lymphocyte Recruitment. Journal of Immunology, 2004, 173, 2271-2279.	0.8	48
140	Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO Journal, 2003, 22, 4478-4488.	7.8	226
141	Thymic epithelial cells provide Wnt signals to developing thymocytes. European Journal of Immunology, 2003, 33, 1949-1956.	2.9	82
142	Con A activates an Akt/PKB dependent survival mechanism to modulate TCR induced cell death in double positive thymocytes. Molecular Immunology, 2003, 39, 1013-1023.	2.2	30
143	Microenvironmental regulation of Notch signalling in T cell development. Seminars in Immunology, 2003, 15, 91-97.	5.6	34
144	Differential Requirement for Mesenchyme in the Proliferation and Maturation of Thymic Epithelial Progenitors. Journal of Experimental Medicine, 2003, 198, 325-332.	8.5	134

#	Article	IF	CITATIONS
145	Cutting Edge: A Chemical Genetic System for the Analysis of Kinases Regulating T Cell Development. Journal of Immunology, 2003, 171, 519-523.	0.8	23
146	Modeling TCR Signaling Complex Formation in Positive Selection. Journal of Immunology, 2003, 171, 2825-2831.	0.8	25
147	Entry into the Thymic Microenvironment Triggers Notch Activation in the Earliest Migrant T Cell Progenitors. Journal of Immunology, 2003, 170, 1299-1303.	0.8	56
148	One for all and all for one: thymic epithelial stem cells and regeneration. Trends in Immunology, 2002, 23, 391-395.	6.8	69
149	Induction of thymocyte positive selection does not convey immediate resistance to negative selection. Immunology, 2002, 105, 163-170.	4.4	5
150	Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. European Journal of Immunology, 2001, 31, 3349-3354.	2.9	73
151	Lymphostromal interactions in thymic development and function. Nature Reviews Immunology, 2001, 1, 31-40.	22.7	403
152	Protocols for high efficiency, stage-specific retroviral transduction of murine fetal thymocytes and thymic epithelial cells. Journal of Immunological Methods, 2001, 253, 209-222.	1.4	13
153	Studies on the role of IL-7 presentation by mesenchymal fibroblasts during early thymocyte development. European Journal of Immunology, 2000, 30, 2125-2129.	2.9	37
154	RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. European Journal of Immunology, 2000, 30, 1884-1893.	2.9	168
155	An Essential Role for the IL-7 Receptor During Intrathymic Expansion of the Positively Selected Neonatal T Cell Repertoire. Journal of Immunology, 2000, 165, 2410-2414.	0.8	61
156	Microenvironmental regulation of T cell development in the thymus. Seminars in Immunology, 2000, 12, 457-464.	5.6	77
157	Positive selection of thymocytes: the long and winding road. Trends in Immunology, 1999, 20, 463-468.	7.5	66
158	A novel method of cell separation based on dual parameter immunomagnetic cell selection. Journal of Immunological Methods, 1999, 223, 195-205.	1.4	51
159	In vitromodels of T cell development. Seminars in Immunology, 1999, 11, 3-12.	5.6	75
160	Use of explant technology in the study of in vitro immune responses. Journal of Immunological Methods, 1998, 216, 155-163.	1.4	10
161	Fibroblast dependency during early thymocyte development maps to the CD25 ⁺ CD44 ⁺ stage and involves interactions with fibroblast matrix molecules. European Journal of Immunology, 1997, 27, 1200-1206.	2.9	77
162	Discrimination between maintenance- and differentiation-inducing signals during initial and intermediate stages of positive selection. European Journal of Immunology, 1997, 27, 1838-1842.	2.9	33

#	Article	IF	CITATIONS
163	Cellular Interactions in Thymocyte Development. Annual Review of Immunology, 1996, 14, 73-99.	21.8	463
164	The role of the thymus during T-lymphocyte development in vitro. Seminars in Immunology, 1995, 7, 177-183.	5.6	18
165	Positive Selection by Purified MHC Class II / Thymic Epithelial CellsIn Vitro: Costimulatory Signals Mediated by B7 Are Not Involved. Autoimmunity, 1994, 3, 265-271.	0.6	23
166	Fetal thymic organ cultures. Current Opinion in Immunology, 1994, 6, 293-297.	5.5	71
167	Analysis of cytokine gene expression in subpopulations of freshly isolated thymocytes and thymic stromal cells using semiquantitative polymerase chain reaction. European Journal of Immunology, 1993, 23, 922-927.	2.9	123
168	MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature, 1993, 362, 70-73.	27.8	345
169	Investigating Central Tolerance With Reaggregate Thymus Organ Cultures. , 0, , 185-196.		0