Kehe Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3792565/publications.pdf

Version: 2024-02-01

840776 454955 33 893 11 30 citations h-index g-index papers 34 34 34 1111 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Research, 2018, 11, 1500-1519.	10.4	321
2	Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Scientific Reports, 2015, 5, 7910.	3.3	144
3	Well-Defined Core–Shell Fe ₃ O ₄ @Polypyrrole Composite Microspheres with Tunable Shell Thickness: Synthesis and Their Superior Microwave Absorption Performance in the Ku Band. Industrial & Engineering Chemistry Research, 2016, 55, 6263-6275.	3.7	129
4	Evaluation of the Thermodynamic Data of CH3SiCl3 Based on Quantum Chemistry Calculations. Journal of Physical and Chemical Reference Data, 2006, 35, 1385-1390.	4.2	50
5	Thermodynamics of the gas-phase reactions in chemical vapor deposition of silicon carbide with methyltrichlorosilane precursor. Theoretical Chemistry Accounts, 2009, 122, 1-22.	1.4	32
6	Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3–CH4–H2 precursors. Computational and Theoretical Chemistry, 2008, 861, 103-116.	1.5	25
7	Size-selective effects in the geometry and electronic property of bimetallic Au–Ge nanoclusters. Computational and Theoretical Chemistry, 2013, 1010, 32-37.	2.5	23
8	First-principles study of the properties of Li, Al and Cd doped Mg alloys. Journal of Alloys and Compounds, 2014, 596, 63-68.	5.5	22
9	Investigation of thermodynamic properties of gaseous SiC(XÂ and aÂ) with accurate model chemistry calculations. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 5440-5456.	2.6	14
10	Properties of He@C60 studied via structure distortions. Chemical Physics, 2007, 331, 309-320.	1.9	13
11	REACTION THERMODYNAMICS IN CHEMICAL VAPOR DEPOSITION OF BORON CARBIDES WITH ⟨font>BC ⟨ font>⟨sub>3⟨ sub>â€"⟨font>⟨ font>⟨sub>3⟨ sub>⟨font>H⟨ font>⟨sub>6⟨ sub> (PROPENE)-⟨font>H⟨ font>⟨sub>2⟨ sub> PRECURSORS. Journal of Theoretical and Computational Chemistry, 2008, 07, 1269-1312.	1.8	12
12	A method to fast determine the coupling coefficients in CI calculation. Science in China Series B: Chemistry, 1999, 42, 43-52.	0.8	11
13	Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis. Computational Materials Science, 2007, 40, 504-524.	3.0	11
14	An investigation of the lowest reaction pathway of propeneÂ+ÂBCl3 decomposition in chemical vapor deposition process. Theoretical Chemistry Accounts, 2010, 127, 519-538.	1.4	9
15	Thermodynamics of the Production of Condensed Phases in the CVD of Methyltrichlorosilane Pyrolysis. Chemical Vapor Deposition, 2009, 15, 281-290.	1.3	8
16	Thermodynamic study on co-deposition of ZrB2–SiC from ZrCl4–BCl3–CH3SiCl3–H2–Ar system. Thin Solid Films, 2012, 520, 7030-7034.	1.8	8
17	Reaction pathways of propene pyrolysis. Journal of Computational Chemistry, 2010, 31, 1421-1442.	3.3	7
18	NEW REACTION PATHWAYS OF PROPENE + BCl₃ DECOMPOSITION IN CHEMICAL VAPOR DEPOSITION PROCESS. Journal of Theoretical and Computational Chemistry, 2012, 11, 53-85.	1.8	6

#	Article	IF	CITATIONS
19	Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide. Computational and Theoretical Chemistry, 2011, 967, 265-272.	2.5	5
20	Reaction rate of propene pyrolysis. Journal of Computational Chemistry, 2011, 32, 2745-2755.	3.3	5
21	Reaction paths of BCl3Â+ÂCH4Â+ÂH2 in the chemical vapor deposition process. Structural Chemistry, 2012, 23, 1677-1692.	2.0	5
22	Thermodynamic study on the chemical vapor deposition of boron nitride from the BCl3–NH3–H2 system. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	4
23	Decomposition reaction rate of BCl3–CH4–H2 in the gas phase. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	4
24	Hydrogen abstraction mechanisms and reaction rates of toluene+NO3. Journal of Molecular Modeling, 2015, 21, 207.	1.8	4
25	Decomposition Reaction Rate of BCl ₃ 46(propene)–H ₂ in the Gas Phase. Journal of Physical Chemistry A, 2012, 116, 6955-6966.	2.5	3
26	Thermodynamics investigation of the gas-phase reactions in the chemical vapor deposition of silicon borides with BCl3–SiCl4–H2 precursors. Structural Chemistry, 2014, 25, 1369-1384.	2.0	3
27	Thermodynamic study of the chemical vapor deposition in the SiCl3CH3–NH3–H2 system. Chemical Physics Letters, 2015, 623, 29-36.	2.6	3
28	Thermodynamic study on the chemical vapor deposition of silicon nitride from the SiCl4–NH3–H2 system. Computational and Theoretical Chemistry, 2015, 1051, 93-103.	2.5	3
29	An adjustable contracted CI method. Science in China Series B: Chemistry, 1999, 42, 649-655.	0.8	2
30	A density functional theory study on the most stable ultra long B–N co-doped (5,5) single walled carbon nanotubes. Chemical Physics Letters, 2012, 532, 90-95.	2.6	2
31	Theoretical investigation on the decomposition reaction mechanisms and kinetics of methyl vinyl ether initialized by OH radical. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	2
32	Electronic structure of SiC (310) twin boundary doped with B, N, Al and Ti. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 599-602.	1.0	0
33	A Density Functional Theory Study on Si Atom Doped (4, 4) and (5, 5) Carbon Nanotubes with Different Concentrations. Journal of Nanoscience and Nanotechnology, 2017, 17, 3824-3828.	0.9	0