

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791862/publications.pdf Version: 2024-02-01

		394421	315739
53	1,618	19	38
papers	citations	h-index	g-index
53	53	53	1517
all docs	docs citations	times ranked	citing authors

\//FIRAO

#	Article	IF	CITATIONS
1	Evaluation of Blood Induced Influence for High-Definition Intravascular Ultrasound (HD-IVUS). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 98-105.	3.0	1
2	Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials, 2022, 280, 121287.	11.4	38
3	Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy. Bioactive Materials, 2022, 16, 418-432.	15.6	45
4	Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering. National Science Review, 2022, 9, .	9.5	45
5	Partial Hadamard encoded synthetic transmit aperture for high frame rate imaging with minimal l ₂ -norm least squares method. Physics in Medicine and Biology, 2022, 67, 105002.	3.0	4
6	Fiber-Based Clock Synchronization Method for Medical Ultrasound System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 136-142.	3.0	1
7	Lowâ€intensity pulsed ultrasound ameliorates depressionâ€like behaviors in a rat model of chronic unpredictable stress. CNS Neuroscience and Therapeutics, 2021, 27, 233-243.	3.9	23
8	Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 6-20.	3.0	46
9	A Dual-Mode 2D Matrix Array for Ultrasound Image-Guided Noninvasive Therapy. IEEE Transactions on Biomedical Engineering, 2021, 68, 3482-3490.	4.2	11
10	Transcranial Focused Ultrasound Stimulation Improves Neurorehabilitation after Middle Cerebral Artery Occlusion in Mice. , 2021, 12, 50.		26
11	Flexible Pico-Liter Acoustic Droplet Ejection Based on High-Frequency Ultrasound Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2212-2218.	3.0	2
12	The Redistribution Layer-First Embedded Fan-Out Wafer Level Packaging for 2-D Ultrasonic Transducer Arrays. IEEE Electron Device Letters, 2021, 42, 1374-1377.	3.9	5
13	Guest Editorial Introduction to the Special Issue on Recent Advances in Ultrasound Technology for Brain Imaging and Therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3-5.	3.0	1
14	Subharmonic Scattering of SonoVue Microbubbles Within 10–40-mmHg Overpressures <i>In Vitro</i> . IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3583-3591.	3.0	7
15	High frequency focal transducer with a Fresnel zone plate for intravascular ultrasound. Applied Physics Letters, 2021, 119, .	3.3	2
16	Ultrasound Skull Imaging for Guiding Noninvasive Ultrasound Brain Therapy in Rodent. , 2021, , .		0
17	Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study. Ultrasound in Medicine and Biology, 2020, 46, 796-804.	1.5	19
18	New Sm-PMN-PT Ceramic-Based 2-D Array for Low-Intensity Ultrasound Therapy Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2085-2094.	3.0	24

Weibao

#	Article	IF	CITATIONS
19	The Mechanosensitive Ion Channel Piezo1 Significantly Mediates InÂVitro Ultrasonic Stimulation of Neurons. IScience, 2019, 21, 448-457.	4.1	150
20	A Novel Racing Array Transducer for Noninvasive Ultrasonic Retinal Stimulation: A Simulation Study. Sensors, 2019, 19, 1825.	3.8	9
21	Low-intensity ultrasound suppresses low-Mg2+-induced epileptiform discharges in juvenile mouse hippocampal slices. Journal of Neural Engineering, 2019, 16, 036006.	3.5	15
22	Cable-Shared Dual-Frequency Catheter for Intravascular Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 849-856.	3.0	18
23	Miniature Transducer Using PNN-PZT-Based Ceramic for Intravascular Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1102-1109.	3.0	19
24	A Dual-Mode Imaging Catheter for Intravascular Ultrasound Application. IEEE Transactions on Medical Imaging, 2019, 38, 657-663.	8.9	13
25	Evaluation of Brain Tumor in Small Animals Using Plane Wave-Based Power Doppler Imaging. Ultrasound in Medicine and Biology, 2019, 45, 811-822.	1.5	16
26	Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice. IEEE Transactions on Biomedical Engineering, 2019, 66, 217-224.	4.2	63
27	High-Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic With Ultrahigh Clamped Dielectric Permittivity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 223-230.	3.0	25
28	Temporal Neuromodulation of Retinal Ganglion Cells by Low-Frequency Focused Ultrasound Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 969-976.	4.9	24
29	Development of a KNN Ceramic-Based Lead-Free Linear Array Ultrasonic Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2113-2120.	3.0	29
30	Imaging-Guided Dual-Target Neuromodulation of the Mouse Brain Using Array Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1583-1589.	3.0	27
31	Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1756-1767.	3.0	22
32	Monitoring the Opening and Recovery of the Blood–Brain Barrier with Noninvasive Molecular Imaging by Biodegradable Ultrasmall Cu _{2–<i>x</i>} Se Nanoparticles. Nano Letters, 2018, 18, 4985-4992.	9.1	105
33	Magnesium Alloy Matching Layer for PMN-PT Single Crystal Transducer Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1865-1872.	3.0	8
34	Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Letters, 2018, 18, 4148-4155.	9.1	165
35	Development of a Mechanical Scanning Device With High-Frequency Ultrasound Transducer for Ultrasonic Capsule Endoscopy. IEEE Transactions on Medical Imaging, 2017, 36, 1922-1929.	8.9	39
36	Simulation Study of an Ultrasound Retinal Prosthesis With a Novel Contact-Lens Array for Noninvasive Retinal Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1605-1611.	4.9	14

Weibao

#	Article	IF	CITATIONS
37	A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 2509-2515.	4.9	38
38	Modulated Excitation Imaging System for Intravascular Ultrasound. IEEE Transactions on Biomedical Engineering, 2017, 64, 1935-1942.	4.2	39
39	Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging. Sensors, 2016, 16, 1906.	3.8	2
40	A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography. Ultrasonics, 2015, 62, 89-96.	3.9	8
41	A novel dual-frequency imaging method for intravascular ultrasound applications. Ultrasonics, 2015, 57, 31-35.	3.9	19
42	Feasibility of Multiple Micro-Particle Trapping—A Simulation Study. Sensors, 2015, 15, 4958-4974.	3.8	0
43	A Digital Multigate Doppler Method for High Frequency Ultrasound. Sensors, 2014, 14, 13348-13360.	3.8	2
44	High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications. Sensors, 2014, 14, 13730-13758.	3.8	73
45	Computer-assisted assessment of ultrasound real-time elastography: Initial experience in 145 breast lesions. European Journal of Radiology, 2014, 83, e1-e7.	2.6	19
46	Piezoelectric single crystal ultrasonic transducers for biomedical applications. Progress in Materials Science, 2014, 66, 87-111.	32.8	299
47	A flexible annular-array imaging platform for micro-ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 178-86.	3.0	20
48	A Novel Modulated Excitation Imaging System for Microultrasound. IEEE Transactions on Biomedical Engineering, 2013, 60, 1884-1890.	4.2	15
49	A modulated excitation imaging system for microultrasound. , 2013, , .		1
50	A flexible annular array imaging platform for micro-ultrasound. , 2012, , .		0
51	An open system for intravascular ultrasound imaging. , 2012, , .		4
52	Radiation forces study of multiple trapping acoustic tweezers. , 2012, , .		0
53	An open system for intravascular ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2201-9.	3.0	18