
Paul M Cryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791808/publications.pdf Version: 2024-02-01

ΡΛΙΙΙ Μ **C ρ**γλΝ

#	Article	IF	CITATIONS
1	Positively selected genes in the hoary bat (<i>Lasiurus cinereus</i>) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ, 2022, 10, e13130.	2.0	0
2	Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals, 2022, 12, 9.	2.3	3
3	Behavioral patterns of bats at a wind turbine confirm seasonality of fatality risk. Ecology and Evolution, 2021, 11, 4843-4853.	1.9	8
4	Historical effective population size of North American hoary bat (Lasiurus cinereus) and challenges to estimating trends in contemporary effective breeding population size from archived samples. PeerJ, 2021, 9, e11285.	2.0	5
5	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	4.7	127
6	Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern US. International Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 27-39.	2.9	5
7	Do you hear what I see? Vocalization relative to visual detection rates of Hawaiian hoary bats (<i>Lasiurus cinereus semotus</i>). Ecology and Evolution, 2017, 7, 6669-6679.	1.9	19
8	Longâ€ŧerm video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods in Ecology and Evolution, 2017, 8, 1813-1821.	5.2	17
9	Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility. PLoS ONE, 2016, 11, e0158115.	2.5	9
10	First Direct Evidence of Long-distance Seasonal Movements and Hibernation in a Migratory Bat. Scientific Reports, 2016, 6, 34585.	3.3	63
11	Multiple mortality events in bats: a global review. Mammal Review, 2016, 46, 175-190.	4.8	240
12	Environment, host, and fungal traits predict continental-scale white-nose syndrome in bats. Science Advances, 2016, 2, e1500831.	10.3	66
13	Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies. Ecology and Evolution, 2015, 5, 2980-2989.	1.9	22
14	Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development. PLoS ONE, 2015, 10, e0132599.	2.5	38
15	Ultraviolet Vision May be Widespread in Bats. Acta Chiropterologica, 2015, 17, 193-198.	0.6	26
16	Not to Put Too Fine a Point on It — Does Increasing Precision of Geographic Referencing Improve Species Distribution Models for a Wide-Ranging Migratory Bat?. Acta Chiropterologica, 2015, 17, 159-169.	0.6	4
17	Optimizing conservation strategies for Mexican free-tailed bats: a population viability and ecosystem services approach. Biodiversity and Conservation, 2015, 24, 63-82.	2.6	17
18	Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus. Endangered Species Research, 2015, 28, 249-257.	2.4	12

PAUL M CRYAN

#	Article	IF	CITATIONS
19	Market Forces and Technological Substitutes Cause Fluctuations in the Value of Bat Pest-Control Services for Cotton. PLoS ONE, 2014, 9, e87912.	2.5	50
20	White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiology, 2014, 14, 10.	3.6	167
21	Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15126-15131.	7.1	152
22	Continentalâ€scale, seasonal movements of a heterothermic migratory tree bat. Ecological Applications, 2014, 24, 602-616.	3.8	63
23	Bat Flight and Zoonotic Viruses. Emerging Infectious Diseases, 2014, 20, 741-745.	4.3	269
24	Roost selection by western long-eared myotis (<i>Myotis evotis</i>) in burned and unburned piñon–juniper woodlands of southwestern Colorado. Journal of Mammalogy, 2013, 94, 640-649.	1.3	16
25	White-nose syndrome in bats: illuminating the darkness. BMC Biology, 2013, 11, 47.	3.8	37
26	Insect Prey Eaten by Hoary Bats (<i>Lasiurus cinereus</i>) Prior to Fatal Collisions with Wind Turbines. Western North American Naturalist, 2013, 73, 516-524.	0.4	22
27	A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122753.	2.6	508
28	Electrolyte Depletion in White-nose Syndrome Bats. Journal of Wildlife Diseases, 2013, 49, 398-402.	0.8	94
29	Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biology Letters, 2013, 9, 20130177.	2.3	150
30	Moving across the border: modeling migratory bat populations. Ecosphere, 2013, 4, 1-16.	2.2	40
31	On Estimating the Economic Value of Insectivorous Bats: Prospects and Priorities for Biologists. , 2013, , 501-515.		21
32	Inoculation of bats with European <i>Geomyces destructans</i> supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6999-7003.	7.1	351
33	Evidence of Late-Summer Mating Readiness and Early Sexual Maturation in Migratory Tree-Roosting Bats Found Dead at Wind Turbines. PLoS ONE, 2012, 7, e47586.	2.5	58
34	Evidence of cryptic individual specialization in an opportunistic insectivorous bat. Journal of Mammalogy, 2012, 93, 381-389.	1.3	37
35	Environmental conditions associated with bat whiteâ€nose syndrome mortality in the northâ€eastern United States. Journal of Applied Ecology, 2012, 49, 680-689.	4.0	47
36	Bats of Mesa Verde National Park, Colorado: Composition, Reproduction, and Roosting Habits. Monographs of the Western North American Naturalist, 2011, 5, 1-19.	0.7	18

PAUL M CRYAN

#	Article	IF	CITATIONS
37	Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature, 2011, 480, 376-378.	27.8	413
38	Economic Importance of Bats in Agriculture. Science, 2011, 332, 41-42.	12.6	599
39	Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans. PLoS ONE, 2011, 6, e19156.	2.5	54
40	Investigating and Managing the Rapid Emergence of White-Nose Syndrome, a Novel, Fatal, Infectious Disease of Hibernating Bats. Conservation Biology, 2011, 25, no-no.	4.7	115
41	Bat ecology and public health surveillance for rabies in an urbanizing region of Colorado. Urban Ecosystems, 2011, 14, 665-697.	2.4	32
42	Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology, 2010, 8, 135.	3.8	232
43	White-Nose Syndrome Fungus (<i>Geomyces destructans</i>) in Bats, Europe. Emerging Infectious Diseases, 2010, 16, 1237-1243.	4.3	144
44	Food Habits of the Hoary Bat (Lasiurus cinereus) during Spring Migration through New Mexico. Southwestern Naturalist, 2009, 54, 195-200.	0.1	38
45	Causes of Bat Fatalities at Wind Turbines: Hypotheses and Predictions. Journal of Mammalogy, 2009, 90, 1330-1340.	1.3	177
46	Broadening the focus of bat conservation and research in the USA for the 21st century. Endangered Species Research, 2009, 8, 129-145.	2.4	53
47	Mating Behavior as a Possible Cause of Bat Fatalities at Wind Turbines. Journal of Wildlife Management, 2008, 72, 845-849.	1.8	84
48	Bats Prove To Be Rich Reservoirs for Emerging Viruses. Microbe Magazine, 2008, 3, 521-528.	0.4	16
49	Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biological Conservation, 2007, 139, 1-11.	4.1	125
50	Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act. Molecular Ecology, 2006, 15, 4331-4359.	3.9	46
51	GIS-based model of stable hydrogen isotope ratios in North American growing-season precipitation for use in animal movement studies. Isotopes in Environmental and Health Studies, 2004, 40, 291-300.	1.0	87
52	STABLE HYDROGEN ISOTOPE ANALYSIS OF BAT HAIR AS EVIDENCE FOR SEASONAL MOLT AND LONG-DISTANCE MIGRATION. Journal of Mammalogy, 2004, 85, 995-1001.	1.3	132
53	SEASONAL DISTRIBUTION OF MIGRATORY TREE BATS (LASIURUS AND LASIONYCTERIS) IN NORTH AMERICA. Journal of Mammalogy, 2003, 84, 579-593.	1.3	221
54	Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat,Lasiurus cinereus,during its spring migration. Journal of Experimental Biology, 2003, 206, 3381-3390.	1.7	124

#	Article	IF	CITATIONS
55	EFFECT OF ELEVATION ON DISTRIBUTION OF FEMALE BATS IN THE BLACK HILLS, SOUTH DAKOTA. Journal of Mammalogy, 2000, 81, 719-725.	1.3	89