
Isla R Simpson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	18.8	436
2	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
3	Storm track processes and the opposing influences of climate change. Nature Geoscience, 2016, 9, 656-664.	12.9	370
4	An Updated Assessment of Nearâ€6urface Temperature Change From 1850: The HadCRUT5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032361.	3.3	299
5	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	3.3	261
6	The Downward Influence of Stratospheric Sudden Warmings*. Journals of the Atmospheric Sciences, 2014, 71, 3856-3876.	1.7	185
7	The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly?. Journal of Climate, 2017, 30, 5059-5082.	3.2	180
8	The Role of Eddies in Driving the Tropospheric Response to Stratospheric Heating Perturbations. Journals of the Atmospheric Sciences, 2009, 66, 1347-1365.	1.7	179
9	A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 2018, 4, eaat6025.	10.3	165
10	A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming*. Journals of the Atmospheric Sciences, 2014, 71, 2489-2515.	1.7	157
11	Causes of Increasing Aridification of the Mediterranean Region in Response to Rising Greenhouse Gases*. Journal of Climate, 2014, 27, 4655-4676.	3.2	137
12	Climate Variability and Change of Mediterranean-Type Climates. Journal of Climate, 2019, 32, 2887-2915.	3.2	132
13	Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.	7.1	131
14	CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bulletin of the American Meteorological Society, 2018, 99, 2361-2371.	3.3	129
15	Dynamical and Thermodynamical Causes of Large-Scale Changes in the Hydrological Cycle over North America in Response to Global Warming*. Journal of Climate, 2014, 27, 7921-7948.	3.2	124
16	The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphereâ€Troposphere Coupling. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030923.	3.3	119
17	Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nature Climate Change, 2016, 6, 65-70.	18.8	108
18	Isolating the Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases: A New CESM1 Large Ensemble Community Resource. Journal of Climate, 2020, 33, 7835-7858.	3.2	93

#	Article	IF	CITATIONS
19	Recent Tropical Expansion: Natural Variability or Forced Response?. Journal of Climate, 2019, 32, 1551-1571.	3.2	87
20	How Well Do We Know ENSO's Climate Impacts over North America, and How Do We Evaluate Models Accordingly?. Journal of Climate, 2018, 31, 4991-5014.	3.2	83
21	Attributing the U.S. Southwest's Recent Shift Into Drier Conditions. Geophysical Research Letters, 2018, 45, 6251-6261.	4.0	82
22	Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophysical Research Letters, 2016, 43, 2896-2903.	4.0	80
23	The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030920.	3.3	78
24	Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032352.	3.3	78
25	The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12587-12616.	3.3	73
26	Revisiting the Relationship among Metrics of Tropical Expansion. Journal of Climate, 2018, 31, 7565-7581.	3.2	61
27	Progress in Simulating the Quasiâ€Biennial Oscillation in CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032362.	3.3	59
28	Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO ₂ Injection Strategies. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7900-7918.	3.3	56
29	An Evaluation of the Large cale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032835.	3.3	55
30	Stratospheric variability and tropospheric annular-mode timescales. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	50
31	Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphereâ€Troposphere Coupling to Quadrupled CO ₂ Concentrations in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032345.	3.3	50
32	Decadal predictability of late winter precipitation in western Europe through an ocean–jet stream connection. Nature Geoscience, 2019, 12, 613-619.	12.9	48
33	Modeled and Observed Multidecadal Variability in the North Atlantic Jet Stream and Its Connection to Sea Surface Temperatures. Journal of Climate, 2018, 31, 8313-8338.	3.2	47
34	Southern Annular Mode Dynamics in Observations and Models. Part II: Eddy Feedbacks. Journal of Climate, 2013, 26, 5220-5241.	3.2	42
35	The TropD software package (v1): standardized methods for calculating tropical-width diagnostics. Geoscientific Model Development, 2018, 11, 4339-4357.	3.6	42
36	Predictability of Northern Hemisphere Final Stratospheric Warmings and Their Surface Impacts. Geophysical Research Letters, 2019, 46, 10578-10588.	4.0	41

#	Article	IF	CITATIONS
37	Sub-seasonal Predictability and the Stratosphere. , 2019, , 223-241.		41
38	Stratospheric Sulfate Aerosol Geoengineering Could Alter the High‣atitude Seasonal Cycle. Geophysical Research Letters, 2019, 46, 14153-14163.	4.0	40
39	Hot extremes have become drier in the United States Southwest. Nature Climate Change, 2021, 11, 598-604.	18.8	40
40	Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12773-12793.	3.3	38
41	The Single Column Atmosphere Model Version 6 (SCAM6): Not a Scam but a Tool for Model Evaluation and Development. Journal of Advances in Modeling Earth Systems, 2019, 11, 1381-1401.	3.8	36
42	Response of the Quasiâ€Biennial Oscillation to a warming climate in global climate models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1490-1518.	2.7	36
43	The Downward Influence of Uncertainty in the Northern Hemisphere Stratospheric Polar Vortex Response to Climate Change. Journal of Climate, 2018, 31, 6371-6391.	3.2	35
44	Nonlinear Response of Extreme Precipitation to Warming in CESM1. Geophysical Research Letters, 2019, 46, 10551-10560.	4.0	35
45	The Lack of QBOâ€MJO Connection in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2020GL087295.	4.0	34
46	Analysis of <scp>UK</scp> precipitation extremes derived from Met Office gridded data. International Journal of Climatology, 2014, 34, 2438-2449.	3.5	32
47	Reduced Poleward Transport Due to Stratospheric Heating Under Stratospheric Aerosols Geoengineering. Geophysical Research Letters, 2020, 47, e2020GL089470.	4.0	32
48	The Influence of the Stratosphere on the Tropical Troposphere. Journal of the Meteorological Society of Japan, 2021, 99, 803-845.	1.8	31
49	Tropical Widening: From Global Variations to Regional Impacts. Bulletin of the American Meteorological Society, 2020, 101, E897-E904.	3.3	31
50	Dynamics of the Lower Stratospheric Circulation Response to ENSO. Journals of the Atmospheric Sciences, 2011, 68, 2537-2556.	1.7	29
51	Persistent polar ocean warming in a strategically geoengineered climate. Nature Geoscience, 2018, 11, 910-914.	12.9	29
52	Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics. Atmospheric Chemistry and Physics, 2021, 21, 6985-6997.	4.9	28
53	Quantifying Eddy Feedbacks and Forcings in the Tropospheric Response to Stratospheric Sudden Warmings. Journals of the Atmospheric Sciences, 2016, 73, 3641-3657.	1.7	27
54	Southern Annular Mode Dynamics in Observations and Models. Part I: The Influence of Climatological Zonal Wind Biases in a Comprehensive GCM. Journal of Climate, 2013, 26, 3953-3967.	3.2	26

#	Article	IF	CITATIONS
55	Mechanisms of Winter Precipitation Variability in the European–Mediterranean Region Associated with the North Atlantic Oscillation. Journal of Climate, 2020, 33, 7179-7196.	3.2	26
56	Seasonal Sensitivity of the Northern Hemisphere Jet Streams to Arctic Temperatures on Subseasonal Time Scales. Journal of Climate, 2017, 30, 10117-10137.	3.2	25
57	CO ₂ Increase Experiments Using the CESM: Relationship to Climate Sensitivity and Comparison of CESM1 to CESM2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002120.	3.8	25
58	Mediterranean Summer Climate and the Importance of Middle East Topography*. Journal of Climate, 2015, 28, 1977-1996.	3.2	23
59	Teleconnections of the Quasiâ€Biennial Oscillation in a multiâ€model ensemble of QBOâ€resolving models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1568-1592.	2.7	23
60	The Impact of the State of the Troposphere on the Response to Stratospheric Heating in a Simplified GCM. Journal of Climate, 2010, 23, 6166-6185.	3.2	22
61	A Mechanism for the Effect of Tropospheric Jet Structure on the Annular Mode–Like Response to Stratospheric Forcing. Journals of the Atmospheric Sciences, 2012, 69, 2152-2170.	1.7	22
62	Western boundary currents and climate change. Journal of Geophysical Research: Oceans, 2016, 121, 7212-7214.	2.6	18
63	Updated precipitation series for the UK derived from Met Office gridded data. International Journal of Climatology, 2012, 32, 2271-2282.	3.5	17
64	Stratospheric Response in the First Geoengineering Simulation Meeting Multiple Surface Climate Objectives. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5762-5782.	3.3	17
65	Local and Nonlocal Land Surface Influence in European Heatwave Initial Condition Ensembles. Geophysical Research Letters, 2019, 46, 14082-14092.	4.0	17
66	A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings. Journal of Climate, 2020, 33, 3901-3917.	3.2	16
67	Emergent Constraints on the Large-Scale Atmospheric Circulation and Regional Hydroclimate: Do They Still Work in CMIP6 and How Much Can They Actually Constrain the Future?. Journal of Climate, 2021, 34, 6355-6377.	3.2	14
68	Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6). Atmospheric Chemistry and Physics, 2022, 22, 197-214.	4.9	13
69	Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
70	The Change in the ENSO Teleconnection under a Low Global Warming Scenario and the Uncertainty due to Internal Variability. Journal of Climate, 2020, 33, 4871-4889.	3.2	12
71	Uncertainty in the Winter Tropospheric Response to Arctic Sea Ice Loss: The Role of Stratospheric Polar Vortex Internal Variability. Journal of Climate, 2022, 35, 3109-3130.	3.2	12
72	Why Do Modeled and Observed Surface Wind Stress Climatologies Differ in the Trade Wind Regions?. Journal of Climate, 2018, 31, 491-513.	3.2	11

#	Article	IF	CITATIONS
73	Intermodel Spread in the Northern Hemisphere Stratospheric Polar Vortex Response to Climate Change in the CMIP5 Models. Geophysical Research Letters, 2019, 46, 13290-13298.	4.0	11
74	Model Biases in the Simulation of the Springtime North Pacific ENSO Teleconnection. Journal of Climate, 2020, 33, 9985-10002.	3.2	9
75	Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: a direct comparison of carbon capture and sulfur injection. Earth System Dynamics, 2020, 11, 673-695.	7.1	7
76	Record Low North American Monsoon Rainfall in 2020 Reignites Drought over the American Southwest. Bulletin of the American Meteorological Society, 2022, 103, S26-S32.	3.3	6
77	Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts. Geoscientific Model Development, 2022, 15, 5073-5092.	3.6	6
78	The impact of the QBO on the region of the tropical tropopause in QBOi models: Presentâ€day simulations. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1945-1964.	2.7	3
79	A Minimal Model to Diagnose the Contribution of the Stratosphere to Tropospheric Forecast Skill. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	3
80	Improvements in Wintertime Surface Temperature Variability in the Community Earth System Model Version 2 (CESM2) Related to the Representation of Snow Density. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	1