Mads Hald Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3791358/publications.pdf

Version: 2024-02-01

132 papers 5,078 citations

36 h-index 65 g-index

134 all docs

134 docs citations

134 times ranked 7379 citing authors

#	Article	IF	CITATIONS
1	Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment. Oncolmmunology, 2022, 11, 2026020.	4.6	9
2	IDO Vaccine Ablates Immune-Suppressive Myeloid Populations and Enhances Antitumor Effects Independent of Tumor Cell IDO Status. Cancer Immunology Research, 2022, 10, 571-580.	3.4	11
3	Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Frontiers in Immunology, 2022, 13, .	4.8	O
4	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	12.4	10
5	Abstract CT535: High clinical efficacy in poor prognosis patients with metastatic melanoma treated with an IDO/PD-L1 peptide vaccine in combination with nivolumab. Cancer Research, 2022, 82, CT535-CT535.	0.9	1
6	An immunogenic first-in-human immune modulatory vaccine with PD-L1 and PD-L2 peptides is feasible and shows early signs of efficacy in follicular lymphoma. Oncolmmunology, 2021, 10, .	4.6	5
7	Cytotoxic T cells isolated from healthy donors and cancer patients kill $TGF\hat{l}^2$ -expressing cancer cells in a $TGF\hat{l}^2$ -dependent manner. Cellular and Molecular Immunology, 2021, 18, 415-426.	10.5	10
8	Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 637420.	2.8	29
9	Vaccination against PD-L1 with IO103 a Novel Immune Modulatory Vaccine in Basal Cell Carcinoma: A Phase IIa Study. Cancers, 2021, 13, 911.	3.7	7
10	Characterization of TGF \hat{I}^2 -specific CD4+T cells through the modulation of TGF \hat{I}^2 expression in malignant myeloid cells. Cellular and Molecular Immunology, 2021, 18, 2575-2577.	10.5	5
11	Lynch syndrome-associated epithelial ovarian cancer and its immunological profile. Gynecologic Oncology, 2021, 162, 686-693.	1.4	10
12	Arginase 1–Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti–PD-1 Checkpoint Blockade. Cancer Immunology Research, 2021, 9, 1316-1326.	3.4	32
13	Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFN \hat{I}^3 , Following Recognition of Autologous Tumor-Antigens. Frontiers in Immunology, 2021, 12, 705422.	4.8	10
14	A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nature Medicine, 2021, 27, 2212-2223.	30.7	88
15	Healthy Donors Harbor Memory T Cell Responses to RAS Neo-Antigens. Cancers, 2020, 12, 3045.	3.7	9
16	Peptide vaccination directed against IDO1-expressing immune cells elicits CD8 ⁺ and CD4 ⁺ T-cell-mediated antitumor immunity and enhanced anti-PD1 responses., 2020, 8, e000605.		34
17	Leveraging Endogenous Dendritic Cells to Enhance the Therapeutic Efficacy of Adoptive T-Cell Therapy and Checkpoint Blockade. Frontiers in Immunology, 2020, 11, 578349.	4.8	11
18	Peptide Vaccination Against PD-L1 With IO103 a Novel Immune Modulatory Vaccine in Multiple Myeloma: A Phase I First-in-Human Trial. Frontiers in Immunology, 2020, 11, 595035.	4.8	17

#	Article	IF	CITATIONS
19	<i>Staphylococcus aureus</i> alpha-toxin inhibits CD8 ⁺ T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncolmmunology, 2020, 9, 1751561.	4.6	24
20	MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers, 2020, 12, 1229.	3.7	28
21	Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer Journal, 2020, 10, 57.	6.2	24
22	The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncolmmunology, 2020, 9, 1771142.	4.6	18
23	Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers, 2020, 12, 1763.	3.7	17
24	Evidence of immune elimination, immuno-editing and immune escape in patients with hematological cancer. Cancer Immunology, Immunotherapy, 2020, 69, 315-324.	4.2	12
25	The T-win® technology: immune-modulating vaccines. Seminars in Immunopathology, 2019, 41, 87-95.	6.1	19
26	Cancer immune therapy for lymphoid malignancies: recent advances. Seminars in Immunopathology, 2019, 41, 111-124.	6.1	15
27	Bâ€cell frequencies and immunoregulatory phenotypes in myeloproliferative neoplasms: Influence of ruxolitinib, interferonâ€Î±2, or combination treatment. European Journal of Haematology, 2019, 103, 351-361.	2.2	6
28	Progression of JAK2-mutant polycythemia vera to CALR-mutant myelofibrosis severely impacts on disease phenotype and response to therapy. Leukemia and Lymphoma, 2019, 60, 3296-3299.	1.3	2
29	MERTK Acts as a Costimulatory Receptor on Human CD8+ T Cells. Cancer Immunology Research, 2019, 7, 1472-1484.	3.4	39
30	Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunology, Immunotherapy, 2019, 68, 1901-1907.	4.2	16
31	Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 ⁺ T cells in cutaneous T-cell lymphoma. Oncolmmunology, 2019, 8, e1641387.	4.6	32
32	High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer Journal, 2019, 9, 8.	6.2	27
33	Peripheral memory T cells specific for Arginase-1. Cellular and Molecular Immunology, 2019, 16, 718-719.	10.5	13
34	Neo-antigen specific memory T-cell responses in healthy individuals. Oncolmmunology, 2019, 8, e1599640.	4.6	2
35	Immunoprofiles of colorectal cancer from Lynch syndrome. Oncolmmunology, 2019, 8, e1515612.	4.6	14
36	Anti-cancer immunotherapy: breakthroughs and future strategies. Seminars in Immunopathology, 2019, 41, 1-3.	6.1	19

#	Article	IF	Citations
37	The targeting of tumor-associated macrophages by vaccination. Cell Stress, 2019, 3, 139-140.	3.2	13
38	Inflammation induced PD-L1-specific T cells. Cell Stress, 2019, 3, 319-327.	3.2	13
39	Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget, 2019, 10, 4894-4906.	1.8	3
40	The Balance Players of the Adaptive Immune System. Cancer Research, 2018, 78, 1379-1382.	0.9	43
41	Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncolmmunology, 2018, 7, e1433521.	4.6	30
42	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	4.6	33
43	The choriocarcinoma cell line JEG-3 upregulates regulatory T cell phenotypes and modulates pro-inflammatory cytokines through HLA-G. Cellular Immunology, 2018, 324, 14-23.	3.0	14
44	Frequent adaptive immune responses against arginase-1. Oncolmmunology, 2018, 7, e1404215.	4.6	27
45	Sorted peripheral blood cells identify <i>CALR</i> mutations in B- and T-lymphocytes. Leukemia and Lymphoma, 2018, 59, 973-977.	1.3	15
46	Interleukin-26 (IL-26) is a novel anti-microbial peptide produced by T cells in response to staphylococcal enterotoxin. Oncotarget, 2018, 9, 19481-19489.	1.8	15
47	Durable Clinical Responses and Long-Term Follow-Up of Stage Ill–IV Non-Small-Cell Lung Cancer (NSCLC) Patients Treated With IDO Peptide Vaccine in a Phase I Study—A Brief Research Report. Frontiers in Immunology, 2018, 9, 2145.	4.8	37
48	Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Frontiers in Immunology, 2018, 9, 2264.	4.8	19
49	Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncolmmunology, 2018, 7, e1468957.	4.6	15
50	Immunoregulatory antigensâ€"novel targets for cancer immunotherapy. Chinese Clinical Oncology, 2018, 7, 19-19.	1.2	6
51	Cancer and autoimmunity. Seminars in Immunopathology, 2017, 39, 241-243.	6.1	6
52	Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs. Vaccine, 2017, 35, 5629-5636.	3.8	19
53	The JAK2V617F and CALR exon 9 mutations are shared immunogenic neoantigens in hematological malignancy. Oncolmmunology, 2017, 6, e1358334.	4.6	10
54	Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports, 2017, 7, 14516.	3.3	77

#	Article	IF	Citations
55	Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFNI ³ Signaling. Cancer Research, 2017, 77, 4562-4566.	0.9	39
56	Anti-regulatory T cells. Seminars in Immunopathology, 2017, 39, 317-326.	6.1	35
57	The role of dendritic cells in cancer. Seminars in Immunopathology, 2017, 39, 307-316.	6.1	76
58	Indoleamine 2,3-dioxygenase and survivin peptide vaccine combined with temozolomide in metastatic melanoma. Stem Cell Investigation, 2017, 4, 77-77.	3.0	22
59	Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic proteins: a phase I trial. Stem Cell Investigation, 2016, 3, 95-95.	3.0	16
60	mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncolmmunology, 2016, 5, e1207842.	4.6	29
61	Safety, immune and clinical responses in metastatic melanoma patients vaccinated with a long peptide derived from indoleamine 2,3-dioxygenase in combination with ipilimumab. Cytotherapy, 2016, 18, 1043-1055.	0.7	45
62	PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncolmmunology, 2016, 5, e1202391.	4.6	33
63	CCL22-specific T Cells: Modulating the immunosuppressive tumor microenvironment. Oncolmmunology, 2016, 5, e1238541.	4.6	56
64	Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen. Clinical Cancer Research, 2016, 22, 3734-3745.	7.0	234
65	Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21. Cytotherapy, 2016, 18, 1187-1196.	0.7	18
66	The Expression of IL-21 Is Promoted by MEKK4 in Malignant T Cells and Associated with Increased Progression Risk in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2016, 136, 866-869.	0.7	4
67	Novel understanding of self-reactive T cells. Oncolmmunology, 2016, 5, e1083672.	4.6	3
68	PD-L1-specific T cells. Cancer Immunology, Immunotherapy, 2016, 65, 797-804.	4.2	20
69	(GT)n Repeat Polymorphism in Heme Oxygenase-1 (HO-1) Correlates with Clinical Outcome after Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. PLoS ONE, 2016, 11, e0168210.	2.5	5
70	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	3.3	269
71	Establishing the pig as a large animal model for vaccine development against human cancer. Frontiers in Genetics, 2015, 6, 286.	2.3	24
72	Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget, 2015, 6, 15772-15787.	1.8	265

#	Article	IF	Citations
73	Immune Regulation by Self-Recognition: Novel Possibilities for Anticancer Immunotherapy. Journal of the National Cancer Institute, 2015, 107, djv154-djv154.	6.3	39
74	Reorienting the immune system in the treatment of cancer by using anti-PD-1 and anti-PD-L1 antibodies. Drug Discovery Today, 2015, 20, 1127-1134.	6.4	27
75	Aberrant Expression of MHC Class II in Melanoma Attracts Inflammatory Tumor-Specific CD4+ T- Cells, Which Dampen CD8+ T-cell Antitumor Reactivity. Cancer Research, 2015, 75, 3747-3759.	0.9	93
76	Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer. Oncolmmunology, 2015, 4, e968480.	4.6	25
77	Indoleamine 2,3-dioxygenase vaccination. Oncolmmunology, 2015, 4, e983770.	4.6	20
78	The Targeting of Indoleamine 2,3 Dioxygenase â€Mediated Immune Escape in Cancer. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 19-24.	2.5	30
79	Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes. PLoS ONE, 2015, 10, e0131934.	2.5	11
80	Potential roles of self-reactive T cells in autoimmunity: lessons from cancer immunology. Immunologic Research, 2014, 60, 156-164.	2.9	3
81	Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncolmmunology, 2014, 3, e953411.	4.6	4
82	Long-lasting Disease Stabilization in the Absence of Toxicity in Metastatic Lung Cancer Patients Vaccinated with an Epitope Derived from Indoleamine 2,3 Dioxygenase. Clinical Cancer Research, 2014, 20, 221-232.	7.0	118
83	Bioinformatics for cancer immunotherapy target discovery. Cancer Immunology, Immunotherapy, 2014, 63, 1235-1249.	4.2	25
84	Self-reactive T cells: suppressing the suppressors. Cancer Immunology, Immunotherapy, 2014, 63, 313-319.	4.2	11
85	The Expression, Function and Targeting of Haem Oxygenase-1 in Cancer. Current Cancer Drug Targets, 2014, 14, 337-347.	1.6	36
86	PD-L1 specific tumor infiltrating lymphocytes occur frequently in melanoma and HNSCC patients Journal of Clinical Oncology, 2014, 32, 11083-11083.	1.6	0
87	Immune-suppressive properties of the tumor microenvironment. Cancer Immunology, Immunotherapy, 2013, 62, 1137-1148.	4.2	179
88	Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy. Vaccine, 2013, 31, 639-646.	3.8	27
89	Depletion of T lymphocytes is correlated with response to temozolomide in melanoma patients. Oncolmmunology, 2013, 2, e23288.	4.6	25
90	Methods to Improve Adoptive T-Cell Therapy for Melanoma: IFN-Î ³ Enhances Anticancer Responses of Cell Products for Infusion. Journal of Investigative Dermatology, 2013, 133, 545-552.	0.7	36

#	Article	IF	Citations
91	FOXP3-specific immunity. Oncolmmunology, 2013, 2, e26247.	4.6	6
92	HLA-Restricted CTL That Are Specific for the Immune Checkpoint Ligand PD-L1 Occur with High Frequency in Cancer Patients. Cancer Research, 2013, 73, 1764-1776.	0.9	78
93	Keeping each other in check: A reciprocal relationship between cytokines and miRNA. Cell Cycle, 2013, 12, 2171-2171.	2.6	3
94	The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 ⁺ T cells. Oncolmmunology, 2013, 2, e23991.	4.6	52
95	Tumor-Produced Immune Regulating Factors. , 2013, , 287-306.		0
96	Cancer Vaccines and the Potential Benefit of Combination with Standard Cancer Therapies. , 2013, , 347-359.		0
97	Analysis of $\hat{\text{Vl}}$ 1 T cells in clinical grade melanoma-infiltrating lymphocytes. Oncolmmunology, 2012, 1, 1297-1304.	4.6	39
98	T-cell dependent immunoselection. Oncolmmunology, 2012, 1, 1003-1003.	4.6	0
99	CD4 responses against IDO. Oncolmmunology, 2012, 1, 1211-1212.	4.6	10
100	BRAF inhibition improves tumor recognition by the immune system. Oncolmmunology, 2012, 1, 1476-1483.	4.6	82
101	Characterization of T-cell responses against lîºBî± in cancer patients. Oncolmmunology, 2012, 1, 1290-1296.	4.6	4
102	Association of a functional Indoleamine 2,3-dioxygenase 2 genotype with specific immune responses. Oncolmmunology, 2012, 1, 441-447.	4.6	7
103	Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial. Cancer Immunology, Immunotherapy, 2012, 61, 1791-1804.	4.2	103
104	Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunology, Immunotherapy, 2012, 61, 2091-2103.	4.2	69
105	The specific targeting of immune regulation: T-cell responses against Indoleamine 2,3-dioxygenase. Cancer Immunology, Immunotherapy, 2012, 61, 1289-1297.	4.2	32
106	Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. Journal of Translational Medicine, 2012, 10, 169.	4.4	134
107	Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase. PLoS ONE, 2012, 7, e34568.	2.5	43
108	Characterization of Spontaneous Immune Responses against Long Peptides Derived from Bcl-X(L) in Cancer Patients Using Elispot. Cells, 2012, 1, 51-60.	4.1	2

#	Article	IF	Citations
109	Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cellular Immunology, 2012, 273, 1-9.	3.0	23
110	Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer. Cytotherapy, 2011, 13, 822-834.	0.7	39
111	Possible benefits of the targeting of indoleamine 2,3-dioxygenase (IDO) in hepatitis B vaccination. Vaccine, 2011, 29, 3728.	3.8	2
112	Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood, 2011, 117, 2200-2210.	1.4	101
113	Spontaneous Cytotoxic T-Cell Reactivity against Indoleamine 2,3-Dioxygenase-2. Cancer Research, 2011, 71, 2038-2044.	0.9	45
114	Characterization of Ex Vivo Expanded Tumor Infiltrating Lymphocytes from Patients with Malignant Melanoma for Clinical Application. Journal of Skin Cancer, 2011, 2011, 1-6.	1.2	13
115	Therapeutic Cancer Vaccines in Combination with Conventional Therapy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	26
116	Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy, 2010, 12, 721-734.	0.7	66
117	CD8 T-cell Responses against Cyclin B1 in Breast Cancer Patients with Tumors Overexpressing p53. Clinical Cancer Research, 2009, 15, 1543-1549.	7.0	15
118	The immunodominant HLA-A2-restricted MART-1 epitope is not presented on the surface of many melanoma cell lines. Cancer Immunology, Immunotherapy, 2009, 58, 665-675.	4.2	15
119	Identification of heme oxygenase- $1\hat{a}\in$ specific regulatory CD8+ T cells in cancer patients. Journal of Clinical Investigation, 2009, 119, 2245-2256.	8.2	64
120	The Immune System Strikes Back: Cellular Immune Responses against Indoleamine 2,3-dioxygenase. PLoS ONE, 2009, 4, e6910.	2.5	64
121	Cancer treatment: the combination of vaccination with other therapies. Cancer Immunology, Immunotherapy, 2008, 57, 1735-1743.	4.2	48
122	RhoC a new target for therapeutic vaccination against metastatic cancer. Cancer Immunology, Immunotherapy, 2008, 57, 1871-1878.	4.2	21
123	The Immunogenicity of the hTERT540-548 Peptide in Cancer. Clinical Cancer Research, 2008, 14, 4-7.	7.0	42
124	Therapeutic Dendritic Cell Vaccination of Patients With Metastatic Renal Cell Carcinoma. Journal of Immunotherapy, 2008, 31, 771-780.	2.4	87
125	The Universal Character of the Tumor-Associated Antigen Survivin. Clinical Cancer Research, 2007, 13, 5991-5994.	7.0	155
126	Efficient tumor cell lysis mediated by a Bcl-X(L) specific T cell clone isolated from a breast cancer patient. Cancer Immunology, Immunotherapy, 2007, 56, 527-533.	4.2	8

#	Article	IF	CITATIONS
127	Cytotoxic T Cells. Journal of Investigative Dermatology, 2006, 126, 32-41.	0.7	316
128	Immunogenicity of Bcl-2 in patients with cancer. Blood, 2005, 105, 728-734.	1.4	60
129	Regulators of apoptosis: suitable targets for immune therapy of cancer. Nature Reviews Drug Discovery, 2005, 4, 399-409.	46.4	97
130	Spontaneous Immunity against Bcl-xL in Cancer Patients. Journal of Immunology, 2005, 175, 2709-2714.	0.8	38
131	Immunogenicity of Constitutively Active V599EBRaf. Cancer Research, 2004, 64, 5456-5460.	0.9	71
132	Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Seminars in Cancer Biology, 2003, 13, 449-459.	9.6	73