Juha Pekka Salminen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The regulating effect of light on the content of flavan-3-ols and derivatives of hydroxybenzoic acids in the callus culture of the tea plant, Camellia sinensis L. Biochemical Systematics and Ecology, 2022, 101, 104383.	1.3	7
2	Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite, 2022, 29, 10.	2.0	14
3	Dietary proanthocyanidins promote localized antioxidant responses in porcine pulmonary and gastrointestinal tissues during <i>Ascaris suum</i> â€induced type 2 inflammation. FASEB Journal, 2022, 36, e22256.	0.5	7
4	Resistance of subspecies of <i>Eucalyptus camaldulensis</i> to galling by <i>Leptocybe invasa</i> : Could quinic acid derivatives be responsible for leaf abscission and reduced galling?. Agricultural and Forest Entomology, 2022, 24, 167-177.	1.3	1
5	Influence of the Hydrolyzable Tannin Structure on the Characteristics of Insoluble Hydrolyzable Tannin–Protein Complexes. Journal of Agricultural and Food Chemistry, 2022, 70, 13036-13048.	5.2	5
6	Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests. Scientific Reports, 2022, 12, .	3.3	1
7	Branch-Localized Induction Promotes Efficacy of Volatile Defences and Herbivore Predation in Trees. Journal of Chemical Ecology, 2021, 47, 99-111.	1.8	12
8	Identification of Tree Species by Their Defense Compounds: A Study with Leaf Buds of White and Silver Birches. Journal of Chemical Education, 2021, 98, 973-981.	2.3	4
9	Modification of Natural Proanthocyanidin Oligomers and Polymers Via Chemical Oxidation under Alkaline Conditions. ACS Omega, 2021, 6, 4726-4739.	3.5	9
10	Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3′,5′-hydroxylase gene. Journal of Experimental Botany, 2021, 72, 3864-3880.	4.8	23
11	Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS. Molecules, 2021, 26, 1873.	3.8	13
12	Natural Antimicrobials from Cloudberry (<i>Rubus chamaemorus</i>) Seeds by Sanding and Hydrothermal Extraction. ACS Food Science & Technology, 2021, 1, 917-927.	2.7	9
13	Effects of plant traits on caterpillar communities depend on host specialisation. Insect Conservation and Diversity, 2021, 14, 756-767.	3.0	3
14	Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Communications Biology, 2021, 4, 896.	4.4	15
15	Seed tannin composition of tropical plants. Phytochemistry, 2021, 187, 112750.	2.9	5
16	Large Inter- and Intraspecies Variability of Polyphenols and Proanthocyanidins in Eight Temperate Forage Species Indicates Potential for Their Exploitation as Nutraceuticals. Journal of Agricultural and Food Chemistry, 2021, 69, 12445-12455.	5.2	7
17	Condensed Tannins in White Clover (Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro. Frontiers in Plant Science, 2021, 12, 777354.	3.6	17
18	Sanguiin H-6 Fractionated from Cloudberry (Rubus chamaemorus) Seeds Can Prevent the Methicillin-Resistant Staphylococcus aureus Biofilm Development during Wound Infection. Antibiotics, 2021, 10, 1481.	3.7	7

#	Article	IF	CITATIONS
19	New approaches to tannin analysis of leaves can be used to explain <i>in vitro</i> biological activities associated with herbivore defence. New Phytologist, 2020, 225, 488-498.	7.3	36
20	Distribution of enzymatic and alkaline oxidative activities of phenolic compounds in plants. Phytochemistry, 2020, 179, 112501.	2.9	11
21	The Effect of Growth Medium Strength on Minimum Inhibitory Concentrations of Tannins and Tannin Extracts against E. coli. Molecules, 2020, 25, 2947.	3.8	30
22	Distribution of Protein Precipitation Capacity within Variable Proanthocyanidin Fingerprints. Molecules, 2020, 25, 5002.	3.8	10
23	Inhibition of Pneumolysin Cytotoxicity by Hydrolysable Tannins. Antibiotics, 2020, 9, 930.	3.7	7
24	Changes in Feed Proanthocyanidin Profiles during Silage Production and Digestion by Lamb. Molecules, 2020, 25, 5887.	3.8	2
25	Evolution of defense and herbivory in introduced plants—Testing enemy release using a known source population, herbivore trials, and time since introduction. Ecology and Evolution, 2020, 10, 5451-5463.	1.9	7
26	Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry (<i>Vaccinium) Tj ETQc</i>	000 <u>0</u> gBT	Overlock 10 14
27	Ellagitannins Inhibit the Exsheathment of Haemonchus contortus and Trichostrongylus colubriformis Larvae: The Efficiency Increases Together with the Molecular Size. Journal of Agricultural and Food Chemistry, 2020, 68, 4176-4186.	5.2	21
28	Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits. PLoS ONE, 2020, 15, e0228157.	2.5	8
29	Low Concentrations of Protein- and Fiber-Bound Proanthocyanidins in Sainfoin (<i>Onobrychis) Tj ETQq1 1 0.7 Agricultural and Food Chemistry, 2020, 68, 7369-7377.</i>	′84314 rgB 5.2	T /Overlock 1(1
30	Glyphosate-based herbicide has soil-mediated effects on potato glycoalkaloids and oxidative status of a potato pest. Chemosphere, 2020, 258, 127254.	8.2	13
31	Relevance of the Concentrations and Sizes of Oligomeric Red Wine Pigments to the Color Intensity of Commercial Red Wines. Journal of Agricultural and Food Chemistry, 2020, 68, 3576-3584.	5.2	13
32	Aminomethylation of spruce tannins and their application as coagulants for water clarification. Separation and Purification Technology, 2020, 242, 116765.	7.9	31
33	Chemistry of Autumn Colors: Quantitative Spectrophotometric Analysis of Anthocyanins and Carotenoids and Qualitative Analysis of Anthocyanins by Ultra-performance Liquid Chromatography–Tandem Mass Spectrometry. Journal of Chemical Education, 2020, 97, 772-777.	2.3	7
34	Compound Specific Trends of Chemical Defences in Ficus Along an Elevational Gradient Reflect a Complex Selective Landscape. Journal of Chemical Ecology, 2020, 46, 442-454.	1.8	11
35	Fermentation quality of ensiled crimped faba beans using different additives with special attention to changes in bioactive compounds. Animal Feed Science and Technology, 2020, 265, 114497.	2.2	7
36	UPLC-PDA-Q Exactive Orbitrap-MS profiling of the lipophilic compounds product isolated from	3.2	7

Eucalyptus viminalis plants. Heliyon, 2020, 6, e05768.

#	Article	IF	CITATIONS
37	A highly resolved food web for insect seed predators in a speciesâ€rich tropical forest. Ecology Letters, 2019, 22, 1638-1649.	6.4	32
38	Turnover rates of roots vary considerably across temperate forage species. Soil Biology and Biochemistry, 2019, 139, 107614.	8.8	11
39	Does Phoradendron perrottetii (mistletoe) alter polyphenols levels of Tapirira guianensis (host) Tj ETQq1 1 0.7	84314 rgB1 5.8	[Oyerlock]
40	Structural Features of Hydrolyzable Tannins Determine Their Ability to Form Insoluble Complexes with Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 2019, 67, 6798-6808.	5.2	27
41	Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology, 2019, 100, e02739.	3.2	14
42	Liquid chromatography–tandem mass spectrometry reveals detailed chromatographic fingerprints of anthocyanins and anthocyanin adducts in red wine. Food Chemistry, 2019, 294, 138-151.	8.2	25
43	Ellagitannins with Glucopyranose Cores Have Higher Affinities to Proteins than Acyclic Ellagitannins by Isothermal Titration Calorimetry. Journal of Agricultural and Food Chemistry, 2019, 67, 12730-12740.	5.2	20
44	Evolution of defences in large tropical plant genera: perspectives for exploring insect diversity in a tri-trophic context. Current Opinion in Insect Science, 2019, 32, 91-97.	4.4	14
45	Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. Crop Science, 2019, 59, 861-885.	1.8	154
46	Forest diversity effects on insect herbivores: do leaf traits matter?. New Phytologist, 2019, 221, 2250-2260.	7.3	62
47	Ellagitannins from the Onagraceae Decrease the Performance of Generalist and Specialist Herbivores. Journal of Chemical Ecology, 2019, 45, 86-94.	1.8	16
48	Oxidatively Active Plant Phenolics Detected by UHPLC-DAD-MS after Enzymatic and Alkaline Oxidation. Journal of Chemical Ecology, 2018, 44, 483-496.	1.8	16
49	Functional compartmentalisation of nutrients and phenolics in the tissues of galls induced by <i>Leptocybe invasa</i> (Hymenoptera: Eulophidae) on <scp><i>Eucalyptus camaldulensis</i></scp> (Myrtaceae). Austral Entomology, 2018, 57, 238-246.	1.4	38
50	Yellow, red, dead: the nutritional consequences for Cardiaspina densitexta (Hemiptera: Aphalaridae) nymphs of inducing senescence in old Eucalyptus fasciculosa leaves. Austral Entomology, 2018, 57, 265-278.	1.4	7
51	Phytochemical analysis of salal berry (Gaultheria shallon Pursh.), a traditionally-consumed fruit from western North America with exceptionally high proanthocyanidin content. Phytochemistry, 2018, 147, 203-210.	2.9	13
52	Variability in Foliar Ellagitannins of <i>Hippophaë rhamnoides</i> L. and Identification of a New Ellagitannin, Hippophaenin C. Journal of Agricultural and Food Chemistry, 2018, 66, 613-620.	5.2	20
53	Metabolism of ¹⁴ Câ€labelled pentagalloylglucose by <i>Epirrita autumnata</i> and <i>Agriopis aurantiaria</i> (Lepidoptera: Geometridae) and implications for the nutrition of geometrid defoliators. Austral Entomology, 2018, 57, 255-264.	1.4	5
54	Seed polyphenols in a diverse tropical plant community. Journal of Ecology, 2018, 106, 87-100.	4.0	22

#	Article	IF	CITATIONS
55	Transcriptome and defence response in <scp><i>Eucalyptus camaldulensis</i></scp> leaves to feeding by <i>Glycaspis brimblecombei</i> Moore (Hemiptera: Aphalaridae): a stealthy psyllid does not go unnoticed. Austral Entomology, 2018, 57, 247-254.	1.4	23
56	Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in <i>Ficus</i> . Ecology Letters, 2018, 21, 83-92.	6.4	80
57	Experimental manipulation of dietary arsenic levels in great tit nestlings: Accumulation pattern and effects on growth, survival and plasma biochemistry. Environmental Pollution, 2018, 233, 764-773.	7.5	24
58	Isolation of chemically well-defined semipreparative liquid chromatography fractions from complex mixtures of proanthocyanidin oligomers and polymers. Journal of Chromatography A, 2018, 1576, 67-79.	3.7	20
59	Testing for latitudinal gradients in defense at the macroevolutionary scale. Evolution; International Journal of Organic Evolution, 2018, 72, 2129-2143.	2.3	15
60	Two-Dimensional Tannin Fingerprints by Liquid Chromatography Tandem Mass Spectrometry Offer a New Dimension to Plant Tannin Analyses and Help To Visualize the Tannin Diversity in Plants. Journal of Agricultural and Food Chemistry, 2018, 66, 9162-9171.	5.2	43
61	Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Science of the Total Environment, 2018, 642, 285-291.	8.0	87
62	Vitamin profiles in two free-living passerine birds under a metal pollution gradient – A calcium supplementation experiment. Ecotoxicology and Environmental Safety, 2017, 138, 242-252.	6.0	12
63	Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory. Ecology, 2017, 98, 1817-1828.	3.2	34
64	Variability in the production of tannins and other polyphenols in cell cultures of 12 Nordic plant species. Planta, 2017, 246, 227-241.	3.2	36
65	Hydrolyzable Tannins, Flavonol Glycosides, and Phenolic Acids Show Seasonal and Ontogenic Variation in <i>Geranium sylvaticum</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 6387-6403.	5.2	19
66	In vitro fermentation of browse species using goat rumen fluid in relation to browse polyphenol content and composition. Animal Feed Science and Technology, 2017, 231, 1-11.	2.2	8
67	Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure. Plant Physiology, 2017, 174, 154-171.	4.8	122
68	Hydrolysable tannin-based diet rich in gallotannins has a minimal impact on pig performance but significantly reduces salivary and bulbourethral gland size. Animal, 2017, 11, 1617-1625.	3.3	28
69	The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Veterinary Parasitology, 2017, 237, 110-116.	1.8	42
70	Genus-wide variation in foliar polyphenolics in eucalypts. Phytochemistry, 2017, 144, 197-207.	2.9	22
71	Genetic variation of a foundation rockweed species affects associated communities. Ecology, 2017, 98, 2940-2951.	3.2	6
72	Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803.	2.6	25

#	Article	IF	CITATIONS
73	Inter-population and inter-organ distribution of the main polyphenolic compounds of Epilobium angustifolium. Phytochemistry, 2017, 134, 54-63.	2.9	29
74	Effects of eucalypt nutritional quality on the <scp>B</scp> og gumâ€ <scp>V</scp> ictorian metapopulation of <i><scp>C</scp>tenarytaina bipartita</i> and implications for host and range expansion. Ecological Entomology, 2016, 41, 211-225.	2.2	13
75	Drought Effects on Proanthocyanidins in Sainfoin (<i>Onobrychis viciifolia</i> Scop.) Are Dependent on the Plant's Ontogenetic Stage. Journal of Agricultural and Food Chemistry, 2016, 64, 9307-9316.	5.2	39
76	Effects of dietary lead exposure on vitamin levels in great tit nestlings – An experimental manipulation. Environmental Pollution, 2016, 213, 688-697.	7.5	19
77	A study of the structure-activity relationship of oligomeric ellagitannins on ruminal fermentation in vitro. Journal of Dairy Science, 2016, 99, 8041-8052.	3.4	28
78	Impacts of simulated drought stress and artificial damage on concentrations of flavonoids in Jatropha curcas (L.), a biofuel shrub. Journal of Plant Research, 2016, 129, 1141-1150.	2.4	11
79	The Oxidative Activity of Ellagitannins Dictates Their Tendency To Form Highly Stabilized Complexes with Bovine Serum Albumin at Increased pH. Journal of Agricultural and Food Chemistry, 2016, 64, 8994-9003.	5.2	22
80	Effects of experimental calcium availability and anthropogenic metal pollution on eggshell characteristics and yolk carotenoid and vitamin levels in two passerine birds. Chemosphere, 2016, 151, 189-201.	8.2	24
81	Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators. Phytochemistry, 2016, 125, 65-72.	2.9	46
82	Chemical Structures of Plant Hydrolyzable Tannins Reveal Their in Vitro Activity against Egg Hatching and Motility of <i>Haemonchus contortus</i> Nematodes. Journal of Agricultural and Food Chemistry, 2016, 64, 840-851.	5.2	77
83	Can genetically based clines in plant defence explain greaterÂherbivory at higher latitudes?. Ecology Letters, 2015, 18, 1376-1386.	6.4	56
84	Sylvatiins, acetylglucosylated hydrolysable tannins from the petals of Geranium sylvaticum show co-pigment effect. Phytochemistry, 2015, 115, 239-251.	2.9	15
85	Proanthocyanidins and Their Contribution to Sensory Attributes of Black Currant Juices. Journal of Agricultural and Food Chemistry, 2015, 63, 5373-5380.	5.2	24
86	Rapid Fingerprint Analysis of Plant Extracts for Ellagitannins, Gallic Acid, and Quinic Acid Derivatives and Quercetin-, Kaempferol- and Myricetin-Based Flavonol Glycosides by UPLC-QqQ-MS/MS. Journal of Agricultural and Food Chemistry, 2015, 63, 4068-4079.	5.2	86
87	Distribution and content of ellagitannins in Finnish plant species. Phytochemistry, 2015, 116, 188-197.	2.9	51
88	Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry. Journal of Chromatography A, 2015, 1419, 26-36.	3.7	47
89	Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions. Journal of Chemical Ecology, 2015, 41, 822-836.	1.8	11
90	Binding of an Oligomeric Ellagitannin Series to Bovine Serum Albumin (BSA): Analysis by Isothermal Titration Calorimetry (ITC). Journal of Agricultural and Food Chemistry, 2015, 63, 10647-10654.	5.2	68

Juha Pekka Salminen

#	Article	IF	CITATIONS
91	Large Variability of Proanthocyanidin Content and Composition in Sainfoin (<i>Onobrychis) Tj ETQq1 1 0.784314</i>	rgBT /Ove	rlock 10 Tf
92	In Vitro Antioxidant Activity and Phenolic Content of Cedrus brevifolia Bark. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	7
93	Macroevolution of plant defenses against herbivores in the evening primroses. New Phytologist, 2014, 203, 267-279.	7.3	61
94	Chemical-Sensory Characteristics and Consumer Responses of Blackcurrant Juices Produced by Different Industrial Processes. Food and Bioprocess Technology, 2014, 7, 2877-2888.	4.7	33
95	Rapid estimation of the oxidative activities of individual phenolics in crude plant extracts. Phytochemistry, 2014, 103, 76-84.	2.9	21
96	Effects of three years' increase in density of the geometrid Epirrita autumnata on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). Chemoecology, 2014, 24, 201-214.	1.1	8
97	Rapid profiling of phenolic compounds of green and fermented <i>Bergenia crassifolia</i> L. leaves by UPLC-DAD-QqQ-MS and HPLC-DAD-ESI-QTOF-MS. Natural Product Research, 2014, 28, 1530-1533.	1.8	8
98	Rapid Qualitative and Quantitative Analyses of Proanthocyanidin Oligomers and Polymers by UPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2014, 62, 3390-3399.	5.2	113
99	Size and Molecular Flexibility Affect the Binding of Ellagitannins to Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 2014, 62, 9186-9194.	5.2	51
100	Simultaneous inbreeding modifies inbreeding depression in a plant–herbivore interaction. Ecology Letters, 2014, 17, 229-238.	6.4	18
101	Polyphenols in Strawberry (<i>Fragaria</i> × <i>ananassa</i>) Leaves Induced by Plant Activators. Journal of Agricultural and Food Chemistry, 2014, 62, 4592-4600.	5.2	55
102	Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology, 2013, 23, 165-179.	1.1	78
103	Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: nutrition versus oxidative stress. Chemoecology, 2013, 23, 59-70.	1.1	18
104	In Vitro Study on the Antioxidant Activity of a Polyphenol-Rich Extract from Pinus brutia Bark and Its Fractions. Journal of Medicinal Food, 2013, 16, 984-991.	1.5	27
105	Defensive strategies in Geranium sylvaticum. Part 1: Organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids. Phytochemistry, 2013, 95, 394-407.	2.9	48
106	Leaf herbivory increases plant fitness via induced resistance to seed predators. Ecology, 2013, 94, 966-975.	3.2	62
107	Oxidative status in nestlings of three small passerine species exposed to metal pollution. Science of the Total Environment, 2013, 454-455, 466-473.	8.0	46
108	Ellagitannins: defences of <i>Betula nana</i> against <i>Epirrita autumnata</i> folivory?. Agricultural and Forest Entomology, 2013, 15, 187-196.	1.3	6

7

#	Article	IF	CITATIONS
109	Antioxidant Activity of Isolated Ellagitannins from Red Raspberries and Cloudberries. Journal of Agricultural and Food Chemistry, 2012, 60, 1167-1174.	5.2	96
110	The effects of simulated acid rain and heavy metal pollution on the mountain birch–autumnal moth interaction. Chemoecology, 2012, 22, 251-262.	1.1	3
111	Genetic and Environmental Factors Behind Foliar Chemistry of the Mature Mountain Birch. Journal of Chemical Ecology, 2012, 38, 902-913.	1.8	8
112	Evolutionary Potential of Root Chemical Defense: Genetic Correlations with Shoot Chemistry and Plant Growth. Journal of Chemical Ecology, 2012, 38, 992-995.	1.8	22
113	Phenolic Compounds of the Inner Bark of Betula pendula: Seasonal and Genetic Variation and Induction by Wounding. Journal of Chemical Ecology, 2012, 38, 1410-1418.	1.8	19
114	Analysis of Hydrolyzable Tannins and Other Phenolic Compounds in Emblic Leafflower (<i>Phyllanthus emblica</i> L.) Fruits by High Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 8672-8683.	5.2	90
115	Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science, 2012, 338, 113-116.	12.6	389
116	Precipitation of proteins by tannins: effects of concentration, protein/tannin ratio and pH. International Journal of Food Science and Technology, 2012, 47, 875-878.	2.7	50
117	Rapid induced resistance of silver birch affects both innate immunity and performance of gypsy moths: the role of plant chemical defenses. Arthropod-Plant Interactions, 2012, 6, 507-518.	1.1	23
118	Characterization of phenolic compounds from inner bark of <i>Betula pendula</i> . Holzforschung, 2012, 66, 171-181.	1.9	32
119	Plasma carotenoid levels are not directly related to heavy metal exposure or reproductive success in three insectivorous passerines. Environmental Toxicology and Chemistry, 2012, 31, 1363-1369.	4.3	15
120	The Effects of Defoliation-Induced Delayed Changes in Silver Birch Foliar Chemistry on Gypsy Moth Fitness, Immune Response, and Resistance to Baculovirus Infection. Journal of Chemical Ecology, 2012, 38, 295-305.	1.8	23
121	Flavonoid Metabolites in the Hemolymph of European Pine Sawfly (Neodiprion sertifer) Larvae. Journal of Chemical Ecology, 2012, 38, 538-546.	1.8	5
122	Plant Chemistry and Local Adaptation of a Specialized Folivore. PLoS ONE, 2012, 7, e38225.	2.5	17
123	Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environmental Research, 2011, 111, 362-370.	7.5	81
124	Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 2011, 25, 325-338.	3.6	385
125	Simple solution for a complex problem: Proanthocyanidins, galloyl glucoses and ellagitannins fit on a single calibration curve in high performance-gel permeation chromatography. Journal of Chromatography A, 2011, 1218, 7804-7812.	3.7	14
126	Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca). Oecologia, 2011, 165, 277-287.	2.0	15

#	Article	IF	CITATIONS
127	Chemical Ecology of Tannins: Recent Developments in Tannin Chemistry Reveal New Structures and Structure–Activity Patterns. Chemistry - A European Journal, 2011, 17, 2806-2816.	3.3	62
128	Geographical Variation in Egg Mass and Egg Content in a Passerine Bird. PLoS ONE, 2011, 6, e25360.	2.5	29
129	Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia, 2010, 164, 993-1004.	2.0	56
130	Carotenoid Composition of Invertebrates Consumed by Two Insectivorous Bird Species. Journal of Chemical Ecology, 2010, 36, 608-613.	1.8	66
131	New Types of Flavonol Oligoglycosides Accumulate in the Hemolymph of Birch-Feeding Sawfly Larvae. Journal of Chemical Ecology, 2010, 36, 864-872.	1.8	9
132	Fluctuating asymmetry in great tit nestlings in relation to diet quality, calcium availability and pollution exposure. Science of the Total Environment, 2010, 408, 3303-3309.	8.0	24
133	First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 3151-3156.	1.5	38
134	Herbivory enhances positive effects of plant genotypic diversity. Ecology Letters, 2010, 13, 553-563.	6.4	57
135	Associations of plant fitness, leaf chemistry, and damage suggest selection mosaic in plant–herbivore interactions. Ecology, 2010, 91, 2650-2659.	3.2	41
136	Hydrolyzable tannins as "quantitative defenses― Limited impact against Lymantria dispar caterpillars on hybrid poplar. Journal of Insect Physiology, 2009, 55, 297-304.	2.0	71
137	Tree resistance to LymantriaÂdispar caterpillars: importance and limitations of foliar tannin composition. Oecologia, 2009, 159, 777-788.	2.0	55
138	A tree in the jaws of a moth – temporal variation in oak leaf quality and leafâ€chewer performance. Oikos, 2009, 118, 1212-1218.	2.7	16
139	The effects of diet quality and quantity on plumage colour and growth of great tit <i>Parus major</i> nestlings: a food manipulation experiment along a pollution gradient. Journal of Avian Biology, 2009, 40, 491-499.	1.2	66
140	PHYLOGENETIC TRENDS IN PHENOLIC METABOLISM OF MILKWEEDS (<i>ASCLEPIAS</i>): EVIDENCE FOR ESCALATION. Evolution; International Journal of Organic Evolution, 2009, 63, 663-673.	2.3	107
141	Heritability, covariation and natural selection on 24 traits of common evening primrose (<i>Oenothera biennis</i>) from a field experiment. Journal of Evolutionary Biology, 2009, 22, 1295-1307.	1.7	108
142	Phylogenetic ecology of leaf surface traits in the milkweeds (<i>Asclepias</i> spp.): chemistry, ecophysiology, and insect behavior. New Phytologist, 2009, 183, 848-867.	7.3	116
143	Breeding success and lutein availability in great tit (Parus major). Acta Oecologica, 2009, 35, 805-810.	1.1	18
144	Oxidation of Ingested Phenolics in the Tree-Feeding Caterpillar Orgyia leucostigma Depends on Foliar Chemical Composition. Journal of Chemical Ecology, 2008, 34, 748-756.	1.8	45

Juha Pekka Salminen

#	Article	IF	CITATIONS
145	No simple sum: seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology, 2008, 18, 39-51.	1.1	32
146	Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology, 2008, 18, 73-83.	1.1	88
147	Environmental Pollution Affects the Plumage Color of Great Tit Nestlings through Carotenoid Availability. EcoHealth, 2008, 5, 328-337.	2.0	47
148	Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos, 2008, 117, 1560-1568.	2.7	95
149	Carotenoids in a food chain along a pollution gradient. Science of the Total Environment, 2008, 406, 247-255.	8.0	22
150	Hybridization Affects Seasonal Variation of Phytochemical Phenotypes in an Oak Hybrid Complex (Quercus gambelii × Quercus grisea). International Journal of Plant Sciences, 2008, 169, 567-578.	1.3	7
151	A tree in the eyes of a moth ? temporal variation in oak leaf quality and leaf-miner performance. Oikos, 2007, 116, 592-600.	2.7	7
152	A tree in the eyes of a moth – temporal variation in oak leaf quality and leafâ€miner performance. Oikos, 2007, 116, 592-600.	2.7	29
153	Resource selection by female moths in a heterogeneous environment: what is a poor girl to do?. Journal of Animal Ecology, 2007, 76, 854-865.	2.8	55
154	Bitter problems in ecological feeding experiments: Commercial tannin preparations and common methods for tannin quantifications. Biochemical Systematics and Ecology, 2007, 35, 257-262.	1.3	37
155	Immunological Memory of Mountain Birches: Effects of Phenolics on Performance of the Autumnal Moth Depend on Herbivory History of Trees. Journal of Chemical Ecology, 2007, 33, 1160-1176.	1.8	52
156	Defining phytochemical phenotypes: size and shape analysis of phenolic compounds in oaks (Fagaceae,) Tj ETQc	0 0 0 rgBT	- Gyerlock 10
157	HPLC analysis of leaf surface flavonoids for the preliminary classification of birch species. Phytochemical Analysis, 2006, 17, 197-203.	2.4	22
158	Seeing the trees for the leaves - oaks as mosaics for a host-specific moth. Oikos, 2006, 113, 106-120.	2.7	60
159	Tannin Composition Affects the Oxidative Activities of Tree Leaves. Journal of Chemical Ecology, 2006, 32, 2235-2251.	1.8	62
160	Ellagitannins have Greater Oxidative Activities than Condensed Tannins and Galloyl Glucoses at High pH: Potential Impact on Caterpillars. Journal of Chemical Ecology, 2006, 32, 2253-2267.	1.8	133
161	Characterisation of proanthocyanidin aglycones and glycosides from rose hips by high-performance liquid chromatography–mass spectrometry, and their rapid quantification together with Vitamin C. Journal of Chromatography A, 2005, 1077, 170-180.	3.7	62
162	Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology, 2005, 15, 153-159.	1.1	12

#	Article	IF	CITATIONS
163	Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi?. Trees - Structure and Function, 2005, 19, 191-197.	1.9	59
164	Preclinical Evaluation of Rapeseed, Raspberry, and Pine Bark Phenolics for Health Related Effects. Journal of Agricultural and Food Chemistry, 2005, 53, 5922-5931.	5.2	120
165	Rapid Herbivore-Induced Changes in Mountain Birch Phenolics and Nutritive Compounds and Their Effects on Performance of the Major Defoliator, Epirrita autumnata. Journal of Chemical Ecology, 2004, 30, 303-321.	1.8	32
166	Seasonal Variation in the Content of Hydrolyzable Tannins, Flavonoid Glycosides, and Proanthocyanidins in Oak Leaves. Journal of Chemical Ecology, 2004, 30, 1693-1711.	1.8	200
167	Defensive Effect of Surface Flavonoid Aglycones of Betula pubescens Leaves Against First Instar Epirrita autumnata Larvae. Journal of Chemical Ecology, 2004, 30, 2257-2268.	1.8	38
168	New, Sesquiterpenoid-Type Bicyclic Compounds from the Buds ofBetulapubescensâ^ Ring-Contracted Products ofl²-Caryophyllene?. European Journal of Organic Chemistry, 2004, 2004, 2627-2635.	2.4	27
169	Changes in Leaf Trichomes and Epicuticular Flavonoids during Leaf Development in Three Birch Taxa. Annals of Botany, 2004, 94, 233-242.	2.9	101
170	Metabolic Modifications of Birch Leaf Phenolics by an Herbivorous Insect: Detoxification of Flavonoid Aglycones via Glycosylation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 437-444.	1.4	39
171	Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins. Journal of Chemical Ecology, 2003, 29, 1289-1305.	1.8	42
172	Callic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochemical Systematics and Ecology, 2003, 31, 3-16.	1.3	116
173	Comparative Analysis of Leaf Trichome Structure and Composition of Epicuticular Flavonoids in Finnish Birch Species. Annals of Botany, 2003, 91, 643-655.	2.9	89
174	Distribution Of Hydrolysable Tannins In The Foliage Of Finnish Birch Species. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 248-256.	1.4	31
175	Effects of hydrolysable tannins on a herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology, 2002, 12, 203-211.	1.1	54
176	Characterization of the Polyphenolic Composition of Purple Loosestrife (Lythrum salicaria). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 13-20.	1.4	42
177	Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry, 2001, 57, 15-22.	2.9	140
178	Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 1999, 864, 283-291.	3.7	148
179	Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biological Invasions, 0, , 1.	2.4	7