Janusz Rak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3790231/publications.pdf

Version: 2024-02-01

50244 39638 9,372 108 46 94 citations h-index g-index papers 109 109 109 12214 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Coagulome and the tumor microenvironment: an actionable interplay. Trends in Cancer, 2022, 8, 369-383.	3.8	44
2	Cancer genetic alterations and risk of venous thromboembolism. Thrombosis Research, 2022, 213, S29-S34.	0.8	3
3	Blood coagulation and cancer genes. Best Practice and Research in Clinical Haematology, 2022, 35, 101349.	0.7	9
4	Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry. Lab on A Chip, 2021, 21, 855-866.	3.1	36
5	Extracellular Vesicle Mediated Vascular Pathology in Glioblastoma. Sub-Cellular Biochemistry, 2021, 97, 247-273.	1.0	5
6	Selection of Fluorescent, Bioluminescent, and Radioactive Tracers to Accurately Reflect Extracellular Vesicle Biodistribution <i>in Vivo</i> . ACS Nano, 2021, 15, 3212-3227.	7.3	115
7	Isolation of Extracellular Vesicles for Proteomic Profiling. Methods in Molecular Biology, 2021, 2261, 193-206.	0.4	11
8	Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Advances, 2021, 5, 1682-1694.	2.5	46
9	Cancer genes and blood clots. Blood, 2021, 137, 1996-1997.	0.6	5
10	Nanofluidics for Simultaneous Size and Charge Profiling of Extracellular Vesicles. Nano Letters, 2021, 21, 4895-4902.	4.5	11
11	Oncogenic RAS drives the CRAFâ€dependent extracellular vesicle uptake mechanism coupled with metastasis. Journal of Extracellular Vesicles, 2021, 10, e12091.	5.5	15
12	Nanobowtie Embedded Microfluidic Device for SERS Identification of Extracellular Vesicles from Synthetic Liposomes. , 2021 , , .		1
13	SMARCA4/2 loss inhibits chemotherapy-induced apoptosis by restricting IP3R3-mediated Ca2+ flux to mitochondria. Nature Communications, 2021, 12, 5404.	5.8	20
14	Extracellular Vesicle Proteomes Shed Light on the Evolutionary, Interactive, and Functional Divergence of Their Biogenesis Mechanisms. Frontiers in Cell and Developmental Biology, 2021, 9, 734950.	1.8	7
15	Rational Development of Liquid Biopsy Analysis in Renal Cell Carcinoma. Cancers, 2021, 13, 5825.	1.7	7
16	Genetic and epigenetic regulation of cancer coagulome – lessons from heterogeneity of cancer cell populations. Thrombosis Research, 2020, 191, S99-S105.	0.8	14
17	Human multipotent mesenchymal stromal cells cytokine priming promotes RAB27B-regulated secretion of small extracellular vesicles with immunomodulatory cargo. Stem Cell Research and Therapy, 2020, 11, 539.	2.4	40
18	Extracellular vesicles from genetically unstable, oncogene-driven cancer cells trigger micronuclei formation in endothelial cells. Scientific Reports, 2020, 10, 8532.	1.6	18

#	Article	IF	CITATIONS
19	<scp>SMARCB1</scp> loss induces druggable cyclin <scp>D1</scp> deficiency via upregulation of <scp><i>MIR17HG</i></scp> in atypical teratoid rhabdoid tumors. Journal of Pathology, 2020, 252, 77-87.	2.1	11
20	Primary Thromboprophylaxis in Pancreatic Cancer Patients: Why Clinical Practice Guidelines Should Be Implemented. Cancers, 2020, 12, 618.	1.7	16
21	L(C3)icensing of exosomes for RNA export. Nature Cell Biology, 2020, 22, 137-139.	4.6	4
22	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
23	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	1.0	11
24	Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry. ACS Nano, 2019, 13, 10499-10511.	7.3	148
25	CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary. Nature Communications, 2019, 10, 558.	5.8	76
26	SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nature Communications, 2019, 10, 557.	5.8	125
27	Oncogenes and Clotting Factors: The Emerging Role of Tumor Cell Genome and Epigenome in Cancer-Associated Thrombosis. Seminars in Thrombosis and Hemostasis, 2019, 45, 373-384.	1.5	33
28	Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Non-coding RNA, 2019, 5, 1.	1.3	48
29	Oncogenic Regulation of Extracellular Vesicle Proteome and Heterogeneity. Proteomics, 2019, 19, e1800169.	1.3	27
30	Age-related variations in gene expression patterns of renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 166-175.	0.8	8
31	Leukobiopsy â \in " A Possible New Liquid Biopsy Platform for Detecting Oncogenic Mutations. Frontiers in Pharmacology, 2019, 10, 1608.	1.6	6
32	Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-Oncology, 2018, 20, 236-248.	0.6	103
33	Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumorâ€derived extracellular vesicles. Journal of Thrombosis and Haemostasis, 2018, 16, 1800-1813.	1.9	49
34	Molecular subtypes and differentiation programmes of glioma stem cells as determinants of extracellular vesicle profiles and endothelial cellâ€stimulating activities. Journal of Extracellular Vesicles, 2018, 7, 1490144.	5.5	49
35	The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Molecular and Cellular Proteomics, 2018, 17, 1948-1964.	2.5	116
36	Cell Surface GRP78. , 2018, , 63-85.		4

#	Article	IF	CITATIONS
37	Single cell coagulomes as constituents of the oncogene-driven coagulant phenotype in brain tumours. Thrombosis Research, 2018, 164, S136-S142.	0.8	20
38	Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Seminars in Cell and Developmental Biology, 2017, 67, 11-22.	2.3	105
39	Autoantibodies against the cell surface–associated chaperone GRP78 stimulate tumor growth via tissue factor. Journal of Biological Chemistry, 2017, 292, 21180-21192.	1.6	17
40	Inhibition of tissue factor signaling in breast tumour xenografts induces widespread changes in the microRNA expression profile. Biochemical and Biophysical Research Communications, 2017, 494, 700-705.	1.0	8
41	Mek activity is required for ErbB2 expression in breast cancer cells detached from the extracellular matrix. Oncotarget, 2017, 8, 105383-105396.	0.8	2
42	Oncosomes $\hat{a} \in \text{``large and small: what are they, where they came from?. Journal of Extracellular Vesicles, 2016, 5, 33109.}$	5.5	133
43	Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thrombosis Research, 2016, 140, S37-S43.	0.8	18
44	Studies on the Tumor Vasculature and Coagulant Microenvironment. Methods in Molecular Biology, 2016, 1458, 39-58.	0.4	3
45	Comparative transcriptomic analysis of human and Drosophila extracellular vesicles. Scientific Reports, 2016, 6, 27680.	1.6	42
46	Extracellular Vesicles in Brain Tumor Progression. Cellular and Molecular Neurobiology, 2016, 36, 383-407.	1.7	71
47	Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells. American Journal of Pathology, 2016, 186, 446-459.	1.9	32
48	PML–RARa modulates the vascular signature of extracellular vesicles released by acute promyelocytic leukemia cells. Angiogenesis, 2016, 19, 25-38.	3.7	35
49	Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H- <i>ras</i> . Oncotarget, 2016, 7, 51991-52002.	0.8	72
50	Oncogene-dependent survival of highly transformed cancer cells under conditions of extreme centrifugal force – implications for studies on extracellular vesicles. Cellular and Molecular Biology Letters, 2015, 20, 117-29.	2.7	2
51	An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nature Chemistry, 2015, 7, 569-575.	6.6	234
52	Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day. Journal of Extracellular Vesicles, 2015, 4, 26901.	5.5	69
53	Extracellular vesicles in the biology of brain tumour stem cells $\hat{a} \in \mathbb{C}^m$ Implications for inter-cellular communication, therapy and biomarker development. Seminars in Cell and Developmental Biology, 2015, 40, 17-26.	2.3	86
54	Inhibition of Oncogenic Epidermal Growth Factor Receptor Kinase Triggers Release of Exosome-like Extracellular Vesicles and Impacts Their Phosphoprotein and DNA Content. Journal of Biological Chemistry, 2015, 290, 24534-24546.	1.6	99

#	Article	IF	Citations
55	Organ-seeking vesicles. Nature, 2015, 527, 312-314.	13.7	34
56	Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Scientific Reports, 2015, 5, 8717.	1.6	59
57	Genetic Basis of Thrombosis in Cancer. Seminars in Thrombosis and Hemostasis, 2014, 40, 284-295.	1.5	19
58	rain Neoplasms and Coagulation—Lessons from Heterogeneity. Rambam Maimonides Medical Journal, 2014, 5, e0030.	0.4	19
59	The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis. Biochemical and Biophysical Research Communications, 2014, 454, 262-268.	1.0	21
60	Ageing-related responses to antiangiogenic effects of sunitinib in atherosclerosis-prone mice. Mechanisms of Ageing and Development, 2014, 140, 13-22.	2.2	10
61	Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochemical and Biophysical Research Communications, 2014, 451, 295-301.	1.0	159
62	Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3544-3549.	3.3	90
63	Oncogenes and the coagulation system – forces that modulate dormant and aggressive states in cancer. Thrombosis Research, 2014, 133, S1-S9.	0.8	54
64	Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state. Experimental Cell Research, 2013, 319, 2747-2757.	1.2	71
65	Impact of host ageing on the metastatic phenotype. Mechanisms of Ageing and Development, 2013, 134, 118-129.	2.2	8
66	Extracellular vesicles as prospective carriers of oncogenic protein signatures in adult and paediatric brain tumours. Proteomics, 2013, 13, 1595-1607.	1.3	26
67	Brain Neoplasms and Coagulation. Seminars in Thrombosis and Hemostasis, 2013, 39, 881-895.	1.5	38
68	Extracellular Vesicles – Biomarkers and Effectors of the Cellular Interactome in Cancer. Frontiers in Pharmacology, 2013, 4, 21.	1.6	161
69	Oncogenic extracellular vesicles in brain tumor progression. Frontiers in Physiology, 2012, 3, 294.	1.3	95
70	Cancer Cells Induced to Express Mesenchymal Phenotype Release Exosome-like Extracellular Vesicles Carrying Tissue Factor. Journal of Biological Chemistry, 2012, 287, 43565-43572.	1.6	130
71	Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood, 2012, 119, 5543-5552.	0.6	176
72	Genetic pathways linking hemostasis and cancer. Thrombosis Research, 2012, 129, S22-S29.	0.8	35

#	Article	ΙF	Citations
73	Extracellular vesicles – vehicles that spread cancer genes. BioEssays, 2012, 34, 489-497.	1.2	157
74	VEGF-D(ilated) Lymphatics as Gateways to Metastasis. Cancer Cell, 2012, 21, 139-140.	7.7	3
75	Ageâ€related properties of the tumour vasculature in renal cell carcinoma. BJU International, 2011, 107, 416-424.	1.3	23
76	Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular â€~debris'. Seminars in Immunopathology, 2011, 33, 455-467.	2.8	449
77	Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood, 2010, 116, 815-818.	0.6	125
78	Microparticles in Cancer. Seminars in Thrombosis and Hemostasis, 2010, 36, 888-906.	1.5	267
79	New technologies for the detection of circulating tumour cells. British Medical Bulletin, 2010, 94, 49-64.	2.7	103
80	Modulation of the oncogene-dependent tissue factor expression by kinase suppressor of ras 1. Thrombosis Research, 2010, 126, e6-e10.	0.8	22
81	Role of the tissue factor pathway in the biology of tumor initiating cells. Thrombosis Research, 2010, 125, S44-S50.	0.8	38
82	RAS Oncogenes and Tumor-Vascular Interface. , 2010, , 133-165.		2
83	Angiogenesis and Lymphangiogenesis in Colon Cancer Metastasis. Cancer Metastasis - Biology and Treatment, 2010, , 243-287.	0.1	1
84	Microvesicles: Messengers and mediators of tumor progression. Cell Cycle, 2009, 8, 2014-2018.	1.3	379
85	Tissue Factor and Cancer Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2005-2014.	1.1	40
86	Oncogene-Driven Hemostatic Changes in Cancer. Cancer Investigation, 2009, 27, 28-35.	0.6	2
87	Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3794-3799.	3.3	592
88	Tissue factor in tumour progression. Best Practice and Research in Clinical Haematology, 2009, 22, 71-83.	0.7	54
89	Vascular determinants of cancer stem cell dormancy—do age and coagulation system play a role?. Apmis, 2008, 116, 660-676.	0.9	26
90	Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biology, 2008, 10, 619-624.	4.6	1,688

#	Article	IF	Citations
91	Contribution of Host-Derived Tissue Factor to Tumor Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1975-1981.	1.1	79
92	Diverse Roles of Tissue Factor–Expressing Cell Subsets in Tumor Progression. Seminars in Thrombosis and Hemostasis, 2008, 34, 170-181.	1.5	25
93	Tissue factor in cancer. Current Opinion in Hematology, 2008, 15, 522-528.	1.2	51
94	Tissue Factor and Cancer. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2007, 36, 160-176.	0.5	51
95	Atherosclerosis and Vascular Aging as Modifiers of Tumor Progression, Angiogenesis, and Responsiveness to Therapy. American Journal of Pathology, 2007, 171, 1342-1351.	1.9	33
96	The role of tumor-and host-related tissue factor pools in oncogene-driven tumor progression. Thrombosis Research, 2007, 120, S82-S91.	0.8	43
97	Oncogenes, Trousseau Syndrome, and Cancer-Related Changes in the Coagulome of Mice and Humans. Cancer Research, 2006, 66, 10643-10646.	0.4	145
98	Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis?. Medical Hypotheses, 2006, 66, 601-604.	0.8	32
99	Tissue Factor in Cancer and Angiogenesis: The Molecular Link between Genetic Tumor Progression, Tumor Neovascularization, and Cancer Coagulopathy. Seminars in Thrombosis and Hemostasis, 2006, 32, 054-070.	1.5	122
100	Oncogenes and Angiogenesis: Down-regulation of Thrombospondin-1 in Normal Fibroblasts Exposed to Factors from Cancer Cells Harboring Mutant Ras. Cancer Research, 2005, 65, 8878-8886.	0.4	60
101	Regulation of tissue factor and angiogenesis-related genes by changes in cell shape. Biochemical and Biophysical Research Communications, 2005, 337, 1267-1275.	1.0	16
102	Oncogenes as Regulators of Tissue Factor Expression in Cancer: Implications for Tumor Angiogenesis and Anti-Cancer Therapy. Seminars in Thrombosis and Hemostasis, 2004, 30, 21-30.	1.5	51
103	Oncogenes and tumor angiogenesis. Seminars in Cancer Biology, 2004, 14, 93-104.	4.3	64
104	Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene-induced tumors. EMBO Journal, 2003, 22, 4091-4102.	3. 5	60
105	Oncogenes and Angiogenesis: Signaling Three-Dimensional Tumor Growth. Journal of Investigative Dermatology Symposium Proceedings, 2000, 5, 24-33.	0.8	188
106	Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer. Cancer and Metastasis Reviews, 2000, 19, 93-96.	2.7	48
107	Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. Oncogene, 1999, 18, 1023-1032.	2.6	71
108	The dormant in vivo phenotype of early stage primary human melanoma: termination by overexpression of vascular endothelial growth factor. Angiogenesis, 1998, 2, 203-217.	3.7	26