Prem L Bhalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3789016/publications.pdf

Version: 2024-02-01

137 4,822 3
papers citations h-ir

38 60 h-index g-index

148 148 all docs citations

148 times ranked 5146 citing authors

#	Article	IF	CITATIONS
1	Shortâ€term heat stress during flowering results in a decline in Canola seed productivity. Journal of Agronomy and Crop Science, 2022, 208, 486-496.	3.5	14
2	Biological Parts for Engineering Abiotic Stress Tolerance in Plants. Biodesign Research, 2022, 2022, .	1.9	21
3	Molecular characterization of a soybean FT homologue, GmFT7. Scientific Reports, 2021, 11, 3651.	3.3	7
4	The Role of Endoplasmic Reticulum Stress Response in Pollen Development and Heat Stress Tolerance. Frontiers in Plant Science, 2021, 12, 661062.	3.6	37
5	Genome-Wide In Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus. Plants, 2021, 10, 709.	3.5	18
6	Overexpression of <i>PIF4</i> affects plant morphology and accelerates reproductive phase transitions in soybean. Food and Energy Security, 2021, 10, e291.	4.3	12
7	A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis. Plant Reproduction, 2021, 34, 225-242.	2.2	17
8	Circular RNAs Repertoire and Expression Profile during Brassica rapa Pollen Development. International Journal of Molecular Sciences, 2021, 22, 10297.	4.1	13
9	Towards Developing Drought-smart Soybeans. Frontiers in Plant Science, 2021, 12, 750664.	3.6	32
10	Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Functional and Integrative Genomics, 2020, 20, 245-258.	3. 5	22
11	High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71, 555-568.	4.8	113
12	Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. Trends in Genetics, 2020, 36, 132-145.	6.7	137
13	Somatic Embryogenesis and Plant Regeneration from Commercial Soybean Cultivars. Plants, 2020, 9, 38.	3.5	31
14	Global Role of Crop Genomics in the Face of Climate Change. Frontiers in Plant Science, 2020, 11, 922.	3.6	45
15	Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate. Communications Biology, 2020, 3, 235.	4.4	18
16	Engineering Multiple Abiotic Stress Tolerance in Canola, Brassica napus. Frontiers in Plant Science, 2020, 11, 3.	3.6	66
17	RNA-Seq Highlights Molecular Events Associated With Impaired Pollen-Pistil Interactions Following Short-Term Heat Stress in Brassica napus. Frontiers in Plant Science, 2020, 11, 622748.	3.6	18
18	Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Functional and Integrative Genomics, 2019, 19, 515-531.	3.5	44

#	Article	IF	CITATIONS
19	IncRNAs in Plant and Animal Sexual Reproduction. Trends in Plant Science, 2018, 23, 195-205.	8.8	82
20	The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome. Plant Physiology, 2018, 176, 2133-2147.	4.8	88
21	MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice. Plant Journal, 2018, 96, 188-202.	5.7	13
22	Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 2018, 8, 12569.	3.3	22
23	Enabling Molecular Technologies for Trait Improvement in Wheat. Methods in Molecular Biology, 2017, 1679, 3-24.	0.9	6
24	A novel role of the soybean clock gene LUX ARRHYTHMO in male reproductive development. Scientific Reports, 2017, 7, 10605.	3.3	22
25	<i>In Vitro</i> Plant Regeneration from Commercial Cultivars of Soybean. BioMed Research International, 2017, 2017, 1-9.	1.9	23
26	Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System. PLoS ONE, 2017, 12, e0169686.	2.5	6
27	Epigenetic landscape of germline specific genes in the sporophyte cells of Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 328.	3.6	7
28	Anther ontogeny in Brachypodium distachyon. Protoplasma, 2015, 252, 439-450.	2.1	16
29	Isolation and Characterization of Circadian Clock Genes in the Biofuel Plant Pongamia (Millettia) Tj ETQq $1\ 1\ 0.7$	843 <u>1</u> 4 rgB	ST /Qverlock I
30	Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon. Protoplasma, 2015, 252, 1575-1586.	2.1	18
31	Unique and conserved features of floral evocation in legumes. Journal of Integrative Plant Biology, 2014, 56, 714-728.	8.5	17
32	miRNAs in the crosstalk between phytohormone signalling pathways. Journal of Experimental Botany, 2014, 65, 1425-1438.	4.8	227
33	Cytochemistry of pollen development in Brachypodium distachyon. Plant Systematics and Evolution, 2014, 300, 1639-1648.	0.9	8
34	Allergen microarray detects high prevalence of asymptomatic IgE sensitizations to tropical pollen-derived carbohydrates. Journal of Allergy and Clinical Immunology, 2014, 133, 910-914.e5.	2.9	40
35	RNA Sequencing Analysis of the Gametophyte Transcriptome from the Liverwort, Marchantia polymorpha. PLoS ONE, 2014, 9, e97497.	2.5	40
36	Characterization of mutants of a highly cross-reactive calcium-binding protein from Brassica pollen for allergen-specific immunotherapy. Immunobiology, 2013, 218, 1155-1165.	1.9	5

#	Article	IF	Citations
37	Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. BMC Plant Biology, 2013, 13, 105.	3.6	17
38	Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha. BMC Genomics, 2013, 14, 915.	2.8	24
39	Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean. Journal of Experimental Botany, 2013, 64, 5641-5649.	4.8	17
40	An RNA-Seq Transcriptome Analysis of Histone Modifiers and RNA Silencing Genes in Soybean during Floral Initiation Process. PLoS ONE, 2013, 8, e77502.	2.5	33
41	The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process. PLoS ONE, 2013, 8, e65319.	2.5	40
42	Sample preparation for laser-microdissection of soybean shoot apical meristem. International Journal of Plant Biology, 2012, 3, 3.	2.6	1
43	21â€ f Molecular Properties and Immunological Reactivity of Arabidopsis EXPB1, a Nonallergenic Homologue of Grass Group 1 Allergens. World Allergy Organization Journal, 2012, 5, S7-S8.	3.5	0
44	13â€fGene Expression Pattern of Arabidopsis EXPB1, a Nonallergenic Homologue of Grass Group 1 Pollen Allergens. World Allergy Organization Journal, 2012, 5, S5.	3.5	0
45	Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytologist, 2012, 195, 560-573.	7.3	64
46	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	3.9	265
47	Comparative Genomic Analysis of Soybean Flowering Genes. PLoS ONE, 2012, 7, e38250.	2.5	99
48	Putative cis-regulatory elements in genes highly expressed in rice sperm cells. BMC Research Notes, 2011, 4, 319.	1.4	46
49	Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. Journal of Experimental Botany, 2011, 62, 4649-4659.	4.8	34
50	Transcriptome profiling of soybean root tips. Functional Plant Biology, 2011, 38, 451.	2.1	11
51	Novel spatial expression of soybean WUSCHEL in the incipient floral primordia. Planta, 2011, 233, 553-560.	3.2	15
52	Agrobacterium-mediated transformation of Australian rice varieties and promoter analysis of major pollen allergen gene, Ory s 1. Plant Cell Reports, 2011, 30, 1673-1681.	5.6	14
53	Comparative proteomic profiles of the soybean (<i>Glycine max</i>) root apex and differentiated root zone. Proteomics, 2011, 11, 1707-1719.	2.2	42
54	MicroRNAs in the shoot apical meristem of soybean. Journal of Experimental Botany, 2011, 62, 2495-2506.	4.8	80

#	Article	IF	Citations
55	In Vitro Propagation of Australian Native Ornamental Plant, Scaevola. Methods in Molecular Biology, 2010, 589, 235-241.	0.9	O
56	Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways. Plant Signaling and Behavior, 2009, 4, 648-651.	2.4	12
57	Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biology, 2009, 9, 25.	3. 6	71
58	Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Molecular Biology, 2009, 69, 711-727.	3.9	26
59	Mapping of IgE-binding regions on recombinant Cyn d 1 , a major allergen from Bermuda Grass Pollen (BGP). Clinical and Molecular Allergy, 2009, 7 , 3 .	1.8	9
60	Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant Journal, 2009, 57, 832-845.	5.7	52
61	Molecular dissection of the pea shoot apical meristem*. Journal of Experimental Botany, 2009, 60, 4201-4213.	4.8	13
62	Evaluation of Molecular Basis of Cross Reactivity between Rye and Bermuda Grass Pollen Allergens. Allergology International, 2009, 58, 557-564.	3.3	7
63	Molecular repertoire of flowering plant male germ cells. Sexual Plant Reproduction, 2008, 21, 27-36.	2.2	31
64	Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols, 2008, 3, 181-189.	12.0	122
65	Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. BMC Plant Biology, 2008, 8, 73.	3.6	22
66	Biotechnology-based allergy diagnosis and vaccination. Trends in Biotechnology, 2008, 26, 153-161.	9.3	15
67	Genetic engineering for removing food allergens from plants. Trends in Plant Science, 2008, 13, 257-260.	8.8	39
68	Transcriptome-Based Examination of Putative Pollen Allergens of Rice (Oryza sativa ssp. japonica). Molecular Plant, 2008, 1, 751-759.	8.3	27
69	Control of male germâ€cell development in flowering plants. BioEssays, 2007, 29, 1124-1132.	2.5	39
70	Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Reports, 2007, 26, 1045-1052.	5.6	40
71	Assessment of clonal stability of in vitro regenerated shoots of Macadamia tetraphylla by RAPD analysis. Australian Journal of Agricultural Research, 2007, 58, 253.	1.5	4
72	Transcriptional Repression Distinguishes Somatic from Germ Cell Lineages in a Plant. Science, 2006, 313, 496-499.	12.6	46

#	Article	IF	CITATIONS
73	Plant stem cells carve their own niche. Trends in Plant Science, 2006, 11, 241-246.	8.8	49
74	Lie symmetries and exact solutions of a new generalized Hirota–Satsuma coupled KdV system with variable coefficients. International Journal of Engineering Science, 2006, 44, 241-255.	5.0	41
75	Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen. Plant Molecular Biology, 2006, 62, 503-512.	3.9	38
76	Wheat transformation – an update of recent progress. Euphytica, 2006, 149, 353-366.	1.2	33
77	Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Reports, 2006, 25, 249-256.	5.6	44
78	In vitro plant regeneration from immature cotyledon explants of macadamia (Macadamia tetraphylla L.) Tj ETQq0	0.0.rgBT /0 5.6	Dygrlock 10
79	Genetic engineering of wheat – current challenges and opportunities. Trends in Biotechnology, 2006, 24, 305-311.	9.3	94
80	Recombinant Expression Systems for Allergen Vaccines. Inflammation and Allergy: Drug Targets, 2006, 5, 53-59.	1.8	16
81	Editorial [Hot Topic: Emerging Strategies for Allergen Specific Immunotherapy (Guest Editors: Prem L.) Tj ETQq1 1	9.784314 1.8	gBT /Ove
82	Expressed Sequence Tag Analysis of Lilium longiflorum Generative Cells. Plant and Cell Physiology, 2006, 47, 698-705.	3.1	49
83	Agrobacterium-mediated transformation and generation of male sterile lines of Australian canola. Australian Journal of Agricultural Research, 2005, 56, 353.	1.5	26
84	Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant Journal, 2005, 44, 557-568.	5.7	190
85	Transcriptional Activity of Male Gamete-specific Histone gcH3 Promoter in Sperm Cells of Lilium longiflorum. Plant and Cell Physiology, 2005, 46, 797-802.	3.1	25
86	In vitro shoot regeneration from commercial cultivars of Australian canola (Brassica napus L.). Australian Journal of Agricultural Research, 2004, 55, 753.	1.5	18
87	Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br Plant Cell Reports, 2004, 22, 408-414.	5.6	23
88	Knocking out expression of plant allergen genes. Methods, 2004, 32, 340-345.	3.8	24
89	Engineered allergens for immunotherapy. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 569-573.	2.3	15
90	Hypoallergenic derivatives of major grass pollen allergens for allergy vaccination. Immunology and Cell Biology, 2003, 81, 86-91.	2.3	20

#	Article	IF	CITATIONS
91	Effect of cysteine mutagenesis on human IgE reactivity of recombinant forms of the major rye grass pollen allergen Lol p 1. Allergology International, 2003, 52, 183-190.	3.3	6
92	Isolation and characterization of a flowering plant male gametic cell-specific promoter 1. FEBS Letters, 2003, 542, 47-52.	2.8	35
93	Genetic engineering of pollen allergens for hayfever immunotherapy. Expert Review of Vaccines, 2003, 2, 75-84.	4.4	10
94	Oral Immunization with a Recombinant Major Grass Pollen Allergen Induces Blocking Antibodies in Mice. International Archives of Allergy and Immunology, 2003, 130, 119-124.	2.1	10
95	Plant regeneration of the Australian native ornamental genus, <i>Pandorea</i> . Journal of Horticultural Science and Biotechnology, 2003, 78, 148-153.	1.9	3
96	Genetic purity analysis of hybrid broccoli (Brassica oleracea var. italica) seeds using RAPD PCR. Australian Journal of Agricultural Research, 2002, 53, 51.	1.5	11
97	Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy. European Journal of Immunology, 2002, 32, 270-280.	2.9	76
98	Developmental expression of polyubiquitin genes and distribution of ubiquitinated proteins in generative and sperm cells. Sexual Plant Reproduction, 2002, 14, 325-329.	2.2	25
99	Title is missing!. Aerobiologia, 2002, 18, 87-106.	1.7	24
100	Molecular Mechanisms of DNA Damage and Repair: Progress in Plants. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 337-397.	5.2	238
101	Identification of pronp1, a tobacco profilin gene activated in tip-growing cells. Plant Molecular Biology, 2001, 46, 531-538.	3.9	13
102	Hypoallergenic Forms of the Ryegrass Pollen Allergen Lol p 5 as Candidates for Immunotherapy. International Archives of Allergy and Immunology, 2001, 124, 380-382.	2.1	5
103	Reduction in Allergenicity of Grass Pollen by Genetic Engineering. International Archives of Allergy and Immunology, 2001, 124, 51-54.	2.1	25
104	In Vitro Propagation of Pandoreas. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 348-350.	1.0	2
105	In vitro shoot multiplication of <i>Macadamia tetraphylla</i> L. Johnson. Journal of Horticultural Science and Biotechnology, 2000, 75, 1-5.	1.9	19
106	RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleracea var. capitata) cultivar. Genome, 2000, 43, 317-321.	2.0	29
107	Plant regeneration from mature embryo-derived callus of Australian rice (Oryza sativa L.) varieties. Australian Journal of Agricultural Research, 2000, 51, 305.	1.5	22

RAPD analysis of seed purity in a commercial hybrid cabbage (<i>Brassica oleracea </i>Var.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td 240 rgBT /Overlock 10 Tf 50 62 Td

7

108

#	Article	IF	CITATIONS
109	Genetically Engineered Plant Allergens with Reduced Anaphylactic Activity. International Archives of Allergy and Immunology, 1999, 119, 75-85.	2.1	43
110	Male gametic cell-specific gene expression in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2554-2558.	7.1	92
111	Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11676-11680.	7.1	70
112	Male gametic cell-specific expression of H2A and H3 histone genes. Plant Molecular Biology, 1999, 39, 607-614.	3.9	71
113	In vitro propagation of cauliflower, Brassica oleracea var. botrytis for hybrid seed production. Plant Cell, Tissue and Organ Culture, 1999, 56, 89-95.	2.3	15
114	Evaluation of genetic diversity and genome fingerprinting of <i>Pandorea </i> (Bignoniaceae) by RAPD and inter-SSR PCR. Genome, 1999, 42, 714-719.	2.0	23
115	Direct in vitro regeneration of the Australian fan flower, Scaevola aemula R. Br Scientia Horticulturae, 1999, 79, 65-74.	3.6	9
116	Plant Regeneration from Callus of Australian Fan Flower, Scaevola. Journal of Plant Physiology, 1999, 154, 374-378.	3.5	6
117	Evaluation of genetic diversity and genome fingerprinting of <i>Pandorea</i> (Bignoniaceae) by RAPD and inter-SSR PCR. Genome, 1999, 42, 714-719.	2.0	6
118	Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var. botrytis. Molecular Breeding, 1998, 4, 531-541.	2.1	49
119	Plant homologue of human excision repair geneERCC1points to conservation of DNA repair mechanisms. Plant Journal, 1998, 13, 823-829.	5.7	73
120	Engineering of hypoallergenic mutants of the <i>Brassica</i> pollen allergen, Bra r 1, for immunotherapy. FEBS Letters, 1998, 434, 255-260.	2.8	52
121	Comparison of shoot regeneration potential from seedling explants of Australian cauliflower (Brassica oleracea var. botrytis) varieties. Australian Journal of Agricultural Research, 1998, 49, 1261.	1.5	15
122	RAPD analysis off genetic variation in the Australian fan flower, <i>Scaevola</i> . Genome, 1997, 40, 600-606.	2.0	23
123	Clonal Propagation of Cauliflower, Brassica oleracea botrytis for Hybrid Seed Production. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 451C-451.	1.0	0
124	Studies on in Vitro Culture of the Australian Fan Flower, Scaevola. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 548B-548.	1.0	0
125	Esterases in pollen and stigma of Brassica. Sexual Plant Reproduction, 1995, 8, 289.	2.2	21
126	Isolation of a gene preferentially expressed in mature anthers of rice (Oryza sativa L.). Protoplasma, 1995, 187, 127-131.	2.1	7

#	Article	IF	CITATIONS
127	Cloning, expression and immunological characterization of Ory s 1, the major allergen of rice pollen. Gene, 1995 , 164 , 255 - 259 .	2.2	41
128	Chloroplast phosphoproteins: Phosphorylation of a 12-kDa stromal protein by the redox-controlled kinase of thylakoid membranes. Archives of Biochemistry and Biophysics, 1987, 252, 97-104.	3.0	39
129	Endopeptidase and Carboxypeptidase Enzymes of Vacuoles Prepared from Mesophyll Protoplasts of the Primary Leaf of Wheat Seedlings. Journal of Plant Physiology, 1986, 122, 289-302.	3.5	27
130	Characterization of Peptide Hydrolase Activity Associated with Thylakoids of the Primary Leaves of Wheat. Journal of Plant Physiology, 1985, 119, 35-43.	3.5	31
131	Mobilization of Nitrogen and Phosphorus from Endosperm. , 1984, , 163-199.		3
132	Changes in the Number and Composition of Chloroplasts during Senescence of Mesophyll Cells of Attached and Detached Primary Leaves of Wheat (<i>Triticum aestivum</i> L.). Plant Physiology, 1984, 75, 421-424.	4.8	68
133	Characteristics of a β-Galactosidase Associated with the Stroma of Chloroplasts Prepared from Mesophyll Protoplasts of the Primary Leaf of Wheat. Plant Physiology, 1984, 76, 92-95.	4.8	37
134	Characterization of Pentose Phosphate Pathway in Embryo Suspensor of Tropaeolum majus. Biochemie Und Physiologie Der Pflanzen, 1981, 176, 789-792.	0.5	2
135	Studies on the Comparative Biosynthetic Activities of Embryo and Suspensor in Tropaeolum majus L Zeitschrift FÃ $^1\!\!/\!\!4$ r Pflanzenphysiologie, 1981, 103, 115-119.	1.4	2
136	Dark Fixation of CO2 by Embryo-suspensors of Nasturtium (Tropaeolum majus). Biochemie Und Physiologie Der Pflanzen, 1980, 175, 263-267.	0.5	2
137	Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers. Frontiers in Plant Science, 0, 13, .	3.6	3