Thomas J Pucadyil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3788026/publications.pdf Version: 2024-02-01

ΤΗΟΜΛς Ι ΡΠΟΛΟΥΠ

#	Article	IF	CITATIONS
1	Protein–Protein Interactions on Membrane Surfaces Analysed Using Pull-Downs with Supported Bilayers on Silica Beads. Journal of Membrane Biology, 2022, 255, 591-597.	2.1	0
2	Metal-Binding Propensity in the Mitochondrial Dynamin-Related Protein 1. Journal of Membrane Biology, 2022, 255, 143-150.	2.1	1
3	Is Drp1 sufficient to catalyze membrane fission?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	1
4	Membrane Fission: Insights from Reconstituting Organelle Form and Chemistry. Biophysical Journal, 2021, 120, 195a-196a.	0.5	0
5	Function and regulation of the divisome for mitochondrial fission. Nature, 2021, 590, 57-66.	27.8	179
6	Molecular Interplay at the Membrane and Impact on Cellular Physiology. Journal of Membrane Biology, 2021, 254, 239-242.	2.1	1
7	Understanding membrane traffic from molecular ensemble, energetics, and the cell biology of participant components. Current Opinion in Cell Biology, 2021, 71, iii-vi.	5.4	2
8	A facile, sensitive and quantitative membraneâ€binding assay for proteins. Traffic, 2020, 21, 297-305.	2.7	10
9	PLiMAP: Proximityâ€Based Labeling of Membraneâ€Associated Proteins. Current Protocols in Protein Science, 2020, 101, e110.	2.8	9
10	Cellular functions and intrinsic attributes of the <scp>ATP</scp> â€binding Eps15 homology domainâ€containing proteins. Protein Science, 2020, 29, 1321-1330.	7.6	6
11	A Screen for Membrane Fission Catalysts Identifies the ATPase EHD1. Biochemistry, 2019, 58, 65-71.	2.5	11
12	Excess area dependent scaling behavior of nano-sized membrane tethers. Physical Biology, 2018, 15, 026002.	1.8	15
13	ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling. Nature Communications, 2018, 9, 5187.	12.8	40
14	Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature Communications, 2018, 9, 5239.	12.8	167
15	<i>Salmonella</i> SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. Journal of Cell Biology, 2018, 217, 4199-4214.	5.2	25
16	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	2.8	212
17	SMrT Assay for Real-Time Visualization and Analysis of Clathrin Assembly Reactions. Methods in Molecular Biology, 2018, 1847, 161-175.	0.9	0
18	A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences, 2018, 43, 431-435.	1.1	0

THOMAS J PUCADYIL

#	Article	IF	CITATIONS
19	A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. Journal of Biosciences, 2018, 43, 431-435.	1.1	0
20	Use of the supported membrane tube assay system for real-time analysis of membrane fission reactions. Nature Protocols, 2017, 12, 390-400.	12.0	24
21	The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission. Molecular Biology of the Cell, 2017, 28, 152-160.	2.1	23
22	Sphingolipids modulate the function of human serotonin 1A receptors: Insights from sphingolipid-deficient cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 598-604.	2.6	18
23	Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering. Molecular Biology of the Cell, 2016, 27, 3156-3163.	2.1	15
24	Thomas Pucadyil: Piecing together membrane fission. Journal of Cell Biology, 2015, 211, 720-721.	5.2	0
25	Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature. Journal of Biological Chemistry, 2015, 290, 14267-14276.	3.4	23
26	A high-throughput platform for real-time analysis of membrane fission reactions reveals dynamin function. Nature Cell Biology, 2015, 17, 1588-1596.	10.3	51
27	Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nature Protocols, 2013, 8, 213-222.	12.0	45
28	Geometric Catalysis of Membrane Fission Driven by Flexible Dynamin Rings. Science, 2013, 339, 1433-1436.	12.6	123
29	Dynamic Remodeling of Membranes Catalyzed by Dynamin. Current Topics in Membranes, 2011, 68, 33-47.	0.9	5
30	Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E234-42.	7.1	87
31	Supported Bilayers with Excess Membrane Reservoir: A Template for Reconstituting Membrane Budding and Fission. Biophysical Journal, 2010, 99, 517-525.	0.5	53
32	Chronic Cholesterol Depletion Using Statin Impairs the Function and Dynamics of Human Serotonin _{1A} Receptors. Biochemistry, 2010, 49, 5426-5435.	2.5	132
33	Conserved Functions of Membrane Active GTPases in Coated Vesicle Formation. Science, 2009, 325, 1217-1220.	12.6	160
34	An Intramolecular Signaling Element that Modulates Dynamin Function In Vitro and In Vivo. Molecular Biology of the Cell, 2009, 20, 3561-3571.	2.1	76
35	Membrane Insertion of the Pleckstrin Homology Domain Variable Loop 1 Is Critical for Dynamin-catalyzed Vesicle Scission. Molecular Biology of the Cell, 2009, 20, 4630-4639.	2.1	94
36	Dissecting dynamin's role in clathrin-mediated endocytosis. Biochemical Society Transactions, 2009, 37, 1022-1026.	3.4	169

THOMAS J PUCADYIL

#	Article	IF	CITATIONS
37	Actin Cytoskeleton-Dependent Dynamics of the Human Serotonin1A Receptor Correlates with Receptor Signaling. Biophysical Journal, 2008, 95, 451-463.	0.5	72
38	Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2022-2025.	2.6	35
39	Real-Time Visualization of Dynamin-Catalyzed Membrane Fission and Vesicle Release. Cell, 2008, 135, 1263-1275.	28.9	251
40	Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 655-668.	2.6	97
41	Supported lipid bilayer array to study clathrin mediated endocytosis in vitro. , 2007, , .		Ο
42	Organization and Dynamics of NBD-Labeled Lipids in Membranes Analyzed by Fluorescence Recovery after Photobleaching. Journal of Physical Chemistry B, 2007, 111, 1975-1983.	2.6	54
43	Cholesterol: a potential therapeutic target in Leishmania infection?. Trends in Parasitology, 2007, 23, 49-53.	3.3	77
44	Membrane Organization and Dynamics of the Serotonin 1A Receptor Monitored Using Fluorescence Microscopic Approaches. Frontiers in Neuroscience, 2007, , 41-60.	0.0	1
45	Monitoring the organization and dynamics of bovine hippocampal membranes utilizing differentially localized fluorescent membrane probes. Molecular Membrane Biology, 2006, 23, 430-441.	2.0	10
46	The sterol-binding antibiotic nystatin inhibits entry of non-opsonized Leishmania donovani into macrophages. Biochemical and Biophysical Research Communications, 2006, 339, 661-666.	2.1	34
47	Role of cholesterol in the function and organization of G-protein coupled receptors. Progress in Lipid Research, 2006, 45, 295-333.	11.6	259
48	Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. Chemistry and Physics of Lipids, 2006, 143, 11-21.	3.2	32
49	The human serotonin1A receptor exhibits G-protein-dependent cell surface dynamics. Glycoconjugate Journal, 2006, 24, 25-31.	2.7	21
50	Confocal Fluorescence Recovery After Photobleaching of Green Fluorescent Protein in Solution. Journal of Fluorescence, 2006, 16, 87-94.	2.5	33
51	Ligand Binding and G-protein Coupling of the Serotonin1A Receptor in Cholesterol-enriched Hippocampal Membranes. Bioscience Reports, 2006, 26, 79-87.	2.4	4
52	Prolonged Treatment with Ligands Affects Ligand Binding to the Human Serotonin1A Receptor in Chinese Hamster Ovary Cells. Cellular and Molecular Neurobiology, 2006, 26, 247-257.	3.3	0
53	Membrane Organization and Dynamics of the G-Protein-Coupled Serotonin1A Receptor Monitored Using Fluorescence-Based Approaches. Journal of Fluorescence, 2005, 15, 785-796.	2.5	7
54	The Serotonin1A A Receptor: A Representative Member of the Serotonin Receptor Family. Cellular and Molecular Neurobiology, 2005, 25, 553-580.	3.3	222

THOMAS J PUCADYIL

#	Article	IF	CITATIONS
55	The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin _{1A} receptor. Molecular Membrane Biology, 2005, 22, 241-249.	2.0	41
56	Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1714, 35-42.	2.6	48
57	Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochemical and Biophysical Research Communications, 2005, 331, 422-427.	2.1	43
58	Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochemical and Biophysical Research Communications, 2005, 327, 1036-1041.	2.1	45
59	Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida albicans. Antimicrobial Agents and Chemotherapy, 2004, 48, 1778-1787.	3.2	144
60	Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Molecular and Biochemical Parasitology, 2004, 133, 145-152.	1.1	109
61	Ligand Binding Characteristics of the Human Serotonin1A Receptor Heterologously Expressed in CHO Cells. Bioscience Reports, 2004, 24, 101-115.	2.4	40
62	G-Protein-Dependent Cell Surface Dynamics of the Human Serotonin1AReceptor Tagged to Yellow Fluorescent Proteinâ€. Biochemistry, 2004, 43, 15852-15862.	2.5	74
63	Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 9-17.	2.6	25
64	Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1663, 188-200.	2.6	220
65	The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochemical and Biophysical Research Communications, 2004, 320,	2.1	31