Emma Gallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3786792/publications.pdf

Version: 2024-02-01

			117625	133252
83		3,706 citations	34	59
papers		citations	h-index	g-index
	,			
86		86	86	3081
		00	00	3001
all docs		docs citations	times ranked	citing authors
86 all docs		86 docs citations	86 times ranked	3081 citing authors

#	Article	lF	CITATIONS
1	Complexes Derived from the Reaction of Manganese(III) Schiff Base Complexes and Hexacyanoferrate(III):Â Syntheses, Multidimensional Network Structures, and Magnetic Properties. Journal of the American Chemical Society, 1996, 118, 981-994.	13.7	414
2	Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes. Coordination Chemistry Reviews, 2006, 250, 1234-1253.	18.8	272
3	Amination of Benzylic CH Bonds by Arylazides Catalyzed by Coll–Porphyrin Complexes: A Synthetic and Mechanistic Study. Chemistry - A European Journal, 2003, 9, 249-259.	3.3	200
4	Nitrene transfer reactions mediated by metallo-porphyrin complexes. Dalton Transactions, 2009, , 5434.	3.3	157
5	The Two-Dimensional Network Structure and Metamagnetic Properties of the 2:1 Complex of [Mn(3-MeOsalen)(H2O)]ClO4 and K3[Fe(CN)6]. Angewandte Chemie International Edition in English, 1995, 34, 1446-1448.	4.4	133
6	The key intermediate in the amination of saturated Câ \in "H bonds: synthesis, X-ray characterization and catalytic activity of Ru(TPP)(NAr)2 (Ar = 3,5-(CF3)2C6H3). Chemical Communications, 2009, , 3952.	4.1	108
7	Asymmetric Cyclopropanation of Olefins Catalyzed by Chiral Cobalt(II)-Binaphthyl Porphyrins. Organometallics, 2008, 27, 6143-6151.	2.3	92
8	[Silver(I)(Pyridine-Containing Ligand)] Complexes As Unusual Catalysts for A ³ -Coupling Reactions. Journal of Organic Chemistry, 2014, 79, 7311-7320.	3.2	88
9	Carbonâ^'Carbon Bonds Functioning as Electron Shuttles:Â The Generation of Electron-Rich Manganese(II)â^'Schiff Base Complexes and Their Redox Chemistry. Journal of the American Chemical Society, 1997, 119, 5144-5154.	13.7	76
10	Allylic Amination and Aziridination of Olefins by Aryl Azides Catalyzed by Co ^{II} (tpp): A Synthetic and Mechanistic Study. European Journal of Inorganic Chemistry, 2008, 2008, 3009-3019.	2.0	75
11	Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chemical Society Reviews, 2020, 49, 4867-4905.	38.1	74
12	Mono- and bis(dibenzotetramethyltetraaza[14]annulene) complexes of Group IV metals including the structure of the lithium derivative of the macrocyclic ligand. Inorganic Chemistry, 1992, 31, 2520-2527.	4.0	71
13	Fine Chemicals by Reductive Carbonylation of Nitroarenes, Catalyzed by Transition Metal Complexes. Current Organic Chemistry, 2006, 10, 1479-1510.	1.6	71
14	Cyclopropanation Reactions Mediated by Group 9 Metal Porphyrin Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 5071-5081.	2.0	69
15	(Hydroxyphenyl)oxazoline: a Novel and Remarkably Facile Entry into the Area of Chiral Cationic Alkylzirconium Complexes Which Serve as Polymerization Catalysts. Organometallics, 1995, 14, 4994-4996.	2.3	68
16	The (Porphyrin)rutheniumâ€Catalyzed Aziridination of Olefins Using Aryl Azides as Nitrogen Sources. European Journal of Organic Chemistry, 2007, 2007, 6053-6059.	2.4	65
17	Chiral porphyrin complexes of cobalt(II) and ruthenium(II) in catalytic cyclopropanation and amination reactions. Inorganica Chimica Acta, 2006, 359, 2924-2932.	2.4	63
18	Synthesis of N-Arylpyrroles, Hetero-Dielsâ^'Alder Adducts, and Allylic Amines by Reaction of Unfunctionalized Dienes with Nitroarenes and Carbon Monoxide, Catalyzed by Ru(CO)3(Ar-BIAN). Organometallics, 2001, 20, 3390-3398.	2.3	61

#	Article	IF	Citations
19	DFT Mechanistic Proposal of the Ruthenium Porphyrin-Catalyzed Allylic Amination by Organic Azides. ACS Catalysis, 2014, 4, 823-832.	11.2	56
20	Synthesis of Oxazines and N-Arylpyrroles by Reaction of Unfunctionalized Dienes with Nitroarenes and Carbon Monoxide, Catalyzed by Palladiumâ 'Phenanthroline Complexes. Journal of Organic Chemistry, 2003, 68, 460-466.	3.2	53
21	Origin of the Deactivation in Styrene Aziridination by Aryl Azides, Catalyzed by Ruthenium Porphyrin Complexes. Structural Characterization of a Î"2-1,2,3-Triazoline Rull(TPP)CO Complex. Organometallics, 2005, 24, 4710-4713.	2.3	50
22	Rearrangement of <i>N</i> â€Arylâ€2â€Vinylaziridines to Benzoazepines and Dihydropyrroles: A Synthetic and Theoretical Study. Chemistry - A European Journal, 2009, 15, 1241-1251.	3.3	48
23	[Ru(TPP)CO]â€Catalysed Intramolecular Benzylic CH Bond Amination, Affording Phenanthridine and Dihydrophenanthridine Derivatives. Chemistry - A European Journal, 2012, 18, 10487-10490.	3.3	47
24	Insights into the Mechanism of the Ruthenium–Porphyrin atalysed Allylic Amination of Olefins by Aryl Azides. European Journal of Inorganic Chemistry, 2012, 2012, 569-580.	2.0	46
25	New Nonsymmetric Phenanthrolines as Very Effective Ligands in the Palladium-Catalyzed Carbonylation of Nitrobenzene. Organometallics, 2010, 29, 1465-1471.	2.3	45
26	Cationic Arylmanganese(II) Derivatives Occurring in Ion-Pair Forms with Tetraphenylborate Anions: Synthetic, Structural, and Magnetic Studies. Organometallics, 1995, 14, 2265-2276.	2.3	44
27	Structural Determination of Rutheniumâ 'Porphyrin Complexes Relevant to Catalytic Epoxidation of Olefins. Inorganic Chemistry, 2005, 44, 2039-2049.	4.0	43
28	The [Ru(CO)(porphyrin)]-Catalyzed Synthesis of N-Aryl-2-vinylaziridines. European Journal of Organic Chemistry, 2007, 2007, 743-750.	2.4	43
29	Four-centered oxotetramanganese(III) aggregate: a novel approach to redox and aggregation chemistry of manganese. Journal of the American Chemical Society, 1993, 115, 9850-9851.	13.7	38
30	Unexpected isomerism in "[Pd(2,9-dimethylphenanthroline)X2]―(X = Cl, Br, I) complexes: a neutral and an ionic form exist. Dalton Transactions, 2012, 41, 3648.	3.3	36
31	Synthesis of Indoles by Palladiumâ€Catalyzed Reductive Cyclization of βâ€Nitrostyrenes with Carbon Monoxide as the Reductant. European Journal of Organic Chemistry, 2015, 2015, 5712-5715.	2.4	36
32	Designing new ligands: asymmetric cyclopropanation by Cu(i) complexes based on functionalised pyridine-containing macrocyclic ligands. Dalton Transactions, 2008, , 4202.	3.3	35
33	Continuous flow asymmetric cyclopropanation reactions using Cu(<scp>i</scp>) complexes of Pc-L* ligands supported on silica as catalysts with carbon dioxide as a carrier. Green Chemistry, 2014, 16, 3202-3209.	9.0	35
34	Highly diastereoselective cyclopropanation of \hat{l} ±-methylstyrene catalysed by a C ₂ -symmetrical chiral iron porphyrin complex. Chemical Communications, 2014, 50, 1811-1813.	4.1	35
35	Carbonylation of nitrobenzene to N-methyl phenylcarbamate catalyzed by palladium–phenanthroline complexes Bifunctional activation by anthranilic acid. Journal of Molecular Catalysis A, 2003, 204-205, 107-114.	4.8	34
36	Catalytic Polymer Membranes under Forcing Conditions: Reduction of Nitrobenzene by CO/H ₂ O Catalyzed by Ruthenium Bis(arylimino)acenaphthene Complexes. ChemCatChem, 2010, 2, 1150-1164.	3.7	34

#	Article	IF	CITATIONS
37	A mechanistic investigation of the ruthenium porphyrin catalysed aziridination of olefins by aryl azides. Dalton Transactions, 2015, 44, 10479-10489.	3.3	33
38	Dioxygen Activation by a Manganese Complex Containing a Schiff Base: Selective Oxidation of an Imino to an Amido Group within the Salophen Ligand and Formation of a Hydroxy-Bridged MnIII-Polymer. Angewandte Chemie International Edition in English, 1996, 35, 1981-1983.	4.4	31
39	Glycoporphyrin Catalysts for Efficient C–H Bond Aminations by Organic Azides. Organometallics, 2015, 34, 3774-3781.	2.3	30
40	Thiosemicarbazone copper complexes as competent catalysts for olefin cyclopropanations. Journal of Organometallic Chemistry, 2012, 714, 94-103.	1.8	28
41	Synthesis of Biologically Relevant Compounds by Ruthenium Porphyrin Catalyzed Amination of Benzylic C–H Bonds. Organometallics, 2014, 33, 2210-2218.	2.3	28
42	Nitrogen ligands effects in the palladium-catalyzed carbonylation reaction of nitrobenzene to give N-methyl phenylcarbamate. Journal of Organometallic Chemistry, 2014, 771, 59-67.	1.8	27
43	Synthetic Methodology Allowing the Interconversion of Titanium–Oxygen Single Bonds and Double Bonds: The Selfâ€Assembly of Bridging and Terminal Oxotitanium(IV) into Oligomeric and Polymeric Linear Titanoxanes. Chemistry - A European Journal, 1996, 2, 1466-1476.	3.3	26
44	Synthesis of Heterocycles by Intramolecular Cyclization of Organic Azides. Current Organic Chemistry, 2011, 15, 1578-1592.	1.6	26
45	Catalytic amination reactions mediated by Co(II) Schiff base complexes. Journal of Organometallic Chemistry, 2005, 690, 2142-2148.	1.8	25
46	Stability-inducing strain: application to the synthesis of alkyl-BIAN ligands (alkyl-BIAN =) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50,382 Td (b
47	Using ring strain to inhibit a decomposition path: first synthesis of an Alkyl-BIAN ligand (Alkyl-BIAN =) Tj ETQq1 1	0.78431	4 rgBT /Overlo
48	Asymmetric cyclopropanation of olefins catalysed by Cu(<scp>i</scp>) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*). Dalton Transactions, 2013, 42, 2451-2462.	3.3	24
49	Silver Complexation by .sigma. C-H Bonds: Interaction of Silver with meso-Octaethyltetraoxaporphyrinogen. Journal of the American Chemical Society, 1994, 116, 10775-10776.	13.7	23
50	Heterogenization of ruthenium porphyrin complexes in polymeric membranes: Catalytic aziridination of styrenes. Journal of Molecular Catalysis A, 2008, 282, 85-91.	4.8	23
51	Copper catalysed 1,4-addition of organozinc reagents to \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds: a mechanistic investigation. Journal of Organometallic Chemistry, 2004, 689, 2169-2176.	1.8	21
52	Henry reaction catalyzed by copper(I) complexes of a new pyridineâ€containing macrocyclic ligand. Applied Organometallic Chemistry, 2011, 25, 824-829.	3.5	21
53	Indoles Rather than Triazoles from the Ruthenium Porphyrin-Catalyzed Reaction of Alkynes with Aryl Azides. ACS Catalysis, 2014, 4, 3820-3823.	11.2	21
54	Promotion of the [PPN] [Rh(CO)4]-catalysed carbonylation of nitrobenzene by 2-hydroxypyridine and related molecules: an apparent bifunctional activation. Journal of Organometallic Chemistry, 2000, 593-594, 109-118.	1.8	20

#	Article	IF	Citations
55	Fluoride effect on the palladium–phenanthroline catalyzed carbonylation of nitroarenes to carbamates. Applied Organometallic Chemistry, 2007, 21, 782-787.	3.5	19
56	Bifunctional Carriers of Polar Organometallics Using Transition-Metal-Schiff Base Complexes: A Very Easy Access to Manganese(II)-Carbon Functionalities. Organometallics, 1995, 14, 2156-2158.	2.3	18
57	From homogeneously to heterogeneously catalyzed cyclopropanation reactions: New polymeric membranes embedding cobalt chiral schiff base complexes. Journal of Molecular Catalysis A, 2010, 317, 72-80.	4.8	18
58	Ruthenium porphyrins-catalyzed atom-efficient amination of C-H bonds by arylazides. Journal of Porphyrins and Phthalocyanines, 2010, 14, 732-740.	0.8	18
59	Ruthenium Porphyrin Catalyzed Synthesis of Oxazolidin-2-ones by Cycloaddition of CO2 to Aziridines. European Journal of Inorganic Chemistry, 2018, 2018, 5258-5262.	2.0	18
60	Chiral "basket handle" binaphthyl porphyrins: synthesis, catalytic epoxidation and NMR conformational studies. Journal of Porphyrins and Phthalocyanines, 2010, 14, 646-659.	0.8	17
61	Linear Titanoxanes via the Assembling of Bridging and Terminal Oxo-Titanium(IV) Fragments. Inorganic Chemistry, 1995, 34, 2495-2496.	4.0	16
62	Polyoxometalates: Powerful Catalysts for Atomâ€Efficient Cyclopropanations. Advanced Synthesis and Catalysis, 2010, 352, 2365-2370.	4.3	15
63	Co(porphyrin)-catalysed amination of 1,2-dihydronaphthalene derivatives by aryl azides. Journal of Organometallic Chemistry, 2012, 716, 269-274.	1.8	14
64	Silica "SHB―chiral Pc-L* copper complexes for halogen-free solvent cyclopropanation reactions. RSC Advances, 2013, 3, 22199.	3.6	14
65	Comparative Study of the Catalytic Amination of Benzylic C-H Bonds Promoted by Ru(TPP)(py)2and Ru(TPP)(CO). European Journal of Inorganic Chemistry, 2015, 2015, 4885-4893.	2.0	14
66	Synthesis in mesoreactors: Ru(porphyrin)CO-catalyzed aziridination of olefins under continuous flow conditions. Catalysis Science and Technology, 2016, 6, 4700-4704.	4.1	14
67	Mineral Oil/Methanol: A Cheap Biphasic Reaction Medium with Thermomorphic Properties and Its Application to the Palladium atalyzed Carbonylation of Nitrobenzene to Methyl Phenylcarbamate. ChemCatChem, 2015, 7, 2241-2247.	3.7	13
68	Recent advances in Câ€"H bond aminations catalyzed by ruthenium porphyrin complexes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 190-203.	0.8	13
69	An In-Depth Computational Study of Alkene Cyclopropanation Catalyzed by Fe(porphyrin)(OCH ₃) Complexes. The Environmental Effects on the Energy Barriers. Inorganic Chemistry, 2020, 59, 11329-11336.	4.0	13
70	DFT Conformational Studies of Chiral Bis-Binaphthyl Porphyrins and Their Metal Complexes Employed as Cyclopropanation Catalysts. Organometallics, 2014, 33, 6081-6088.	2.3	11
71	Synthesis, characterisation and catalytic use of iron porphyrin amino ester conjugates. New Journal of Chemistry, 2017, 41, 5950-5959.	2.8	11
72	Iron and Ruthenium Glycoporphyrins: Active Catalysts for the Synthesis of Cyclopropanes and Aziridines. European Journal of Inorganic Chemistry, 2019, 2019, 4412-4420.	2.0	10

#	Article	IF	CITATIONS
73	New ruthenium porphyrin polymeric membranes: Preparation and characterization. Applied Catalysis A: General, 2008, 335, 37-45.	4.3	9
74	Synthesis of chiral ruthenium and cobalt (<i>meso</i> -2-amidophenyl)porphyrins and their catalytic activity in cyclopropanation reactions. Journal of Porphyrins and Phthalocyanines, 2011, 15, 602-611.	0.8	9
75	New ruthenium porphyrin polymeric membranes: preparation, characterization and catalytic activity in alkenes aziridination. Desalination, 2006, 199, 167-169.	8.2	8
76	Sensing of diclofenac by a porphyrin-based artificial receptor. New Journal of Chemistry, 2018, 42, 15778-15783.	2.8	8
77	Indoles from Alkynes and Aryl Azides: Scope and Theoretical Assessment of Ruthenium Porphyrinâ€Catalyzed Reactions. Chemistry - A European Journal, 2019, 25, 16591-16605.	3.3	8
78	Valorization of CO ₂ into <i>N</i> àêalkyl Oxazolidinâ€2â€ones Promoted by Metalâ€Free Porphyrin/TBACl System: Experimental and Computational Studies. European Journal of Organic Chemistry, 2021, 2021, 2807-2814.	2.4	7
79	Synthesis and characterization of new tetra-substituted porphyrins with exo-donor carboxylic groups as building blocks for supramolecular architectures: Catalytic and structural studies of their metalated derivatives. Journal of Porphyrins and Phthalocyanines, 2010, 14, 804-814.	0.8	6
80	Crystal structure of a chiral binaphthyl porphyrin. Journal of Porphyrins and Phthalocyanines, 2012, 16, 324-330.	0.8	4
81	Resonance Raman spectroscopy as an in situ probe for monitoring catalytic events in a Ru–porphyrin mediated amination reaction. Analyst, The, 2016, 141, 3050-3058.	3.5	4
82	Cationic arylmanganese(II) derivatives occurring in ion-pair forms with tetraphenylborate anions: synthetic, structural, and magnetic studies. [Erratum to document cited in CA123:83599]. Organometallics, 1995, 14, 4030-4030.	2.3	1
83	Nickel (0) Complexes as Promising Chemosensors for Detecting the "Cork Taint―in Wine. European Journal of Inorganic Chemistry, 0, , .	2.0	0