
Cosimo Giannini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3786218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Triglyceride-to-HDL Cholesterol Ratio. Diabetes Care, 2011, 34, 1869-1874.	8.6	240
2	Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology, 2012, 55, 781-789.	7.3	205
3	Evidence for Early Defects in Insulin Sensitivity and Secretion Before the Onset of Glucose Dysregulation in Obese Youths. Diabetes, 2012, 61, 606-614.	0.6	128
4	Insulin Resistance in Children. Frontiers in Endocrinology, 2019, 10, 342.	3.5	108
5	Increased Oxidative Stress in Prepubertal Severely Obese Children: Effect of a Dietary Restriction-Weight Loss Program. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2653-2658.	3.6	105
6	Growth, growth factors and diabetes. European Journal of Endocrinology, 2004, 151 Suppl 3, U109-U117.	3.7	100
7	Obese related effects of inflammatory markers and insulin resistance on increased carotid intima media thickness in pre-pubertal children. Atherosclerosis, 2008, 197, 448-456.	0.8	100
8	Insulin Resistance and Oxidative Stress in Children Born Small and Large for Gestational Age. Pediatrics, 2009, 124, 695-702.	2.1	95
9	Decreased Transcription of ChREBP-α/β Isoforms in Abdominal Subcutaneous Adipose Tissue of Obese Adolescents With Prediabetes or Early Type 2 Diabetes. Diabetes, 2013, 62, 837-844.	0.6	93
10	A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease. Nutrients, 2017, 9, 642.	4.1	92
11	Circulating Levels of FGF-21 in Obese Youth: Associations With Liver Fat Content and Markers of Liver Damage. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2993-3000.	3.6	89
12	A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes, 2016, 65, 610-618.	0.6	84
13	Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents. Diabetes, 2016, 65, 1929-1939.	0.6	69
14	Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity. Diabetes Care, 2014, 37, 3061-3068.	8.6	64
15	Elevated α-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2473-2481.	3.6	62
16	Increased Oxidative Stress in Prepubertal Children Born Small for Gestational Age. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1372-1378.	3.6	53
17	Triglycerides-to-HDL ratio as a new marker of endothelial dysfunction in obese prepubertal children. European Journal of Endocrinology, 2014, 170, 173-180.	3.7	53
18	A low disposition index in adolescent offspring of mothers with gestational diabetes: a risk marker for the development of impaired glucose tolerance in youth. Diabetologia, 2014, 57, 2413-2420.	6.3	50

#	Article	IF	CITATIONS
19	Influence of the Mediterranean diet on carotid intima–media thickness in hypercholesterolaemic children: A 12-month intervention study. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 75-82.	2.6	50
20	Increased carotid intima-media thickness in pre-pubertal children with constitutional leanness and severe obesity: the speculative role of insulin sensitivity, oxidant status, and chronic inflammation. European Journal of Endocrinology, 2009, 161, 73-80.	3.7	49
21	Prediabetes in youths: mechanisms and biomarkers. The Lancet Child and Adolescent Health, 2017, 1, 240-248.	5.6	46
22	Implications for kidney disease in obese children and adolescents. Pediatric Nephrology, 2011, 26, 749-758.	1.7	45
23	Macrovascular angiopathy in children and adolescents with type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 27, 436-460.	4.0	45
24	Evaluation of Bone Age in Children: A Mini-Review. Frontiers in Pediatrics, 2021, 9, 580314.	1.9	45
25	Relationship between inflammatory markers, oxidant–antioxidant status and intima-media thickness in prepubertal children with juvenile idiopathic arthritis. Clinical Research in Cardiology, 2013, 102, 63-71.	3.3	44
26	What Is the Significance of Soluble and Endogenous Secretory Receptor for Advanced Glycation End Products in Liver Steatosis in Obese Prepubertal Children?. Antioxidants and Redox Signaling, 2011, 14, 1167-1172.	5.4	43
27	Prediction and Prevention of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 248.	3.5	41
28	Insulin resistance and type 2 diabetes in children. Annals of Pediatric Endocrinology and Metabolism, 2020, 25, 217-226.	2.3	39
29	Growth Abnormalities in Children with Type 1 Diabetes, Juvenile Chronic Arthritis, and Asthma. International Journal of Endocrinology, 2014, 2014, 1-10.	1.5	38
30	Association between <i>PTPN22 </i> C1858T and type 1 diabetes: a replication in continental Italy. Tissue Antigens, 2008, 71, 234-237.	1.0	36
31	Oxidized Fatty Acids: A Potential Pathogenic Link Between Fatty Liver and Type 2 Diabetes in Obese Adolescents?. Antioxidants and Redox Signaling, 2014, 20, 383-389.	5.4	36
32	Role of Physical Exercise in Children and Adolescents with Diabetes Mellitus. Journal of Pediatric Endocrinology and Metabolism, 2007, 20, 173-84.	0.9	35
33	Trajectories of changes in glucose tolerance in a multiethnic cohort of obese youths: an observational prospective analysis. The Lancet Child and Adolescent Health, 2018, 2, 726-735.	5.6	35
34	Non-Alcoholic Fatty Liver Disease in Obese Youth With Insulin Resistance and Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 639548.	3.5	35
35	Unbalanced oxidant–antioxidant status and its effects in pediatric diseases. Redox Report, 2011, 16, 101-107.	4.5	34
36	Improved oxidative stress and cardio-metabolic status in obese prepubertal children with liver steatosis treated with lifestyle combined with Vitamin E. Free Radical Research, 2013, 47, 146-153.	3.3	34

#	Article	IF	CITATIONS
37	Text Neck Syndrome in Children and Adolescents. International Journal of Environmental Research and Public Health, 2021, 18, 1565.	2.6	34
38	Longitudinal Effects of MRI-Measured Hepatic Steatosis on Biomarkers of Glucose Homeostasis and Hepatic Apoptosis in Obese Youth. Diabetes Care, 2013, 36, 130-136.	8.6	33
39	Co-occurrence of Risk Alleles in or Near Genes Modulating Insulin Secretion Predisposes Obese Youth to Prediabetes. Diabetes Care, 2014, 37, 475-482.	8.6	30
40	Lower Insulin Clearance Parallels a Reduced Insulin Sensitivity in Obese Youths and Is Associated With a Decline in β-Cell Function Over Time. Diabetes, 2019, 68, 2074-2084.	0.6	30
41	Effects of high-dose vitamin E supplementation on oxidative stress and microalbuminuria in young adult patients with childhood onset type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2007, 23, 539-546.	4.0	29
42	Clucose Effectiveness in Obese Children: Relation to Degree of Obesity and Dysglycemia. Diabetes Care, 2015, 38, 689-695.	8.6	29
43	Weight Gain and Insulin Resistance in Children Treated With Valproate: The Influence of Time. Journal of Child Neurology, 2010, 25, 941-947.	1.4	28
44	The possible role of liver steatosis in defining metabolic syndrome in prepubertal children. Metabolism: Clinical and Experimental, 2010, 59, 671-676.	3.4	27
45	Alterations in the oxidant-antioxidant status in prepubertal children with growth hormone deficiency: effect of growth hormone replacement therapy. Clinical Endocrinology, 2005, 63, 537-542.	2.4	25
46	C-Reactive Protein in Relation to the Development of Microalbuminuria in Type 1 Diabetes. Diabetes Care, 2008, 31, 974-976.	8.6	25
47	Serum Levels of Receptors for Advanced Glycation End Products in Normal-Weight and Obese Children Born Small and Large for Gestational Age. Diabetes Care, 2012, 35, 1361-1363.	8.6	24
48	Blunted suppression of acylâ€ghrelin in response to fructose ingestion in obese adolescents: The role of insulin resistance. Obesity, 2015, 23, 653-661.	3.0	24
49	Fructose Consumption Contributes to Hyperinsulinemia in Adolescents With Obesity Through a GLP-1–Mediated Mechanism. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3481-3490.	3.6	20
50	Increased concentrations of soluble CD40 ligand may help to identify type 1 diabetic adolescents and young adults at risk for developing persistent microalbuminuria. Diabetes/Metabolism Research and Reviews, 2008, 24, 570-576.	4.0	19
51	Technology and the issue of cost/benefit in diabetes. Diabetes/Metabolism Research and Reviews, 2009, 25, S34-44.	4.0	19
52	Functional polymorphisms of GSTA1 and GSTO2 genes associated with asthma in Italian children. Clinical Chemistry and Laboratory Medicine, 2012, 50, 311-5.	2.3	19
53	Quantification of 1H NMR spectra from human plasma. Metabolomics, 2015, 11, 1702-1707.	3.0	19
54	Could Receptors for Advanced Glycation End Products Be Considered Cardiovascular Risk Markers in Obese Children?. Antioxidants and Redox Signaling, 2012, 17, 187-191.	5.4	18

#	Article	IF	CITATIONS
55	Macroangiopathy in Adults and Children with Diabetes: From Molecular Mechanisms to Vascular Damage (Part 1). Hormone and Metabolic Research, 2006, 38, 691-705.	1.5	17
56	The possible role of esRAGE and sRAGE in the natural history of diabetic nephropathy in childhood. Pediatric Nephrology, 2012, 27, 269-275.	1.7	16
57	Islet function in obese adolescents. Diabetes, Obesity and Metabolism, 2012, 14, 40-45.	4.4	15
58	Role of urinary NGAL and KIM-1 as biomarkers of early kidney injury in obese prepubertal children. Journal of Pediatric Endocrinology and Metabolism, 2020, 33, 1183-1189.	0.9	15
59	Reduced endogenous secretory receptor for advanced glycation end products (esRACE) in young people with Type 1 diabetes developing microalbuminuria. Diabetic Medicine, 2009, 26, 815-819.	2.3	14
60	Peculiar characteristics of new-onset Type 1ÂDiabetes during COVID-19 pandemic. Italian Journal of Pediatrics, 2022, 48, 26.	2.6	14
61	Early Insulin Resistance, Type 2 Diabetes, and Treatment Options in Childhood. Hormone Research in Paediatrics, 2022, 95, 149-166.	1.8	14
62	Blood pressure from childhood to adolescence in obese youths in relation to insulin resistance and asymmetric dimethylarginine. Journal of Endocrinological Investigation, 2016, 39, 169-176.	3.3	13
63	Insulin Sensitivity in Prepubertal Caucasian Normal Weight Children. Journal of Pediatric Endocrinology and Metabolism, 2009, 22, 695-702.	0.9	12
64	Thyroid dysfunction in obese pre-pubertal children: Oxidative stress as a potential pathogenetic mechanism. Free Radical Research, 2012, 46, 303-309.	3.3	11
65	Brugada Syndrome Unmasked by Febrile Illness in an Asymptomatic Child. Journal of Pediatrics, 2012, 161, 769-769.e1.	1.8	11
66	Progression of Î ² -Cell Dysfunction in Obese Youth. Current Diabetes Reports, 2013, 13, 89-95.	4.2	11
67	Implications of gastrointestinal hormones in the pathogenesis of obesity in prepubertal children. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 255-60.	0.9	10
68	Weight Loss in Obese Prepubertal Children: The Influence of Insulin Resistance. Endocrine Research, 2013, 38, 48-57.	1.2	10
69	Family history of premature cardiovascular disease as a sole and independent risk factor for increased carotid intima–media thickness. Journal of Hypertension, 2009, 27, 822-828.	0.5	8
70	Pulmonary Outcomes in Children Born Extremely and Very Preterm at 11 Years of Age. Frontiers in Pediatrics, 2021, 9, 635503.	1.9	8
71	Amino Acid-Related Metabolic Signature in Obese Children and Adolescents. Nutrients, 2022, 14, 1454.	4.1	7
72	ls Asymmetric Dimethylarginine Associated with Being Born Small and Large for Gestational Age?. Antioxidants and Redox Signaling, 2014, 20, 2317-2322.	5.4	6

#	Article	IF	CITATIONS
73	Liver Steatosis: A Marker of Metabolic Risk in Children. International Journal of Molecular Sciences, 2022, 23, 4822.	4.1	6
74	Plasma from obese children increases monocyte-endothelial adhesion and affects intracellular insulin signaling in cultured endothelial cells: Potential role of mTORC1-S6K1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166076.	3.8	5
75	ABCD1 gene mutation in an Italian family with X-linkedadrenoleukodystrophy: case series. Endocrinology, Diabetes and Metabolism Case Reports, 2021, 2021, .	0.5	5
76	The bad rainbow of COVID-19 time: effects on glucose metabolism in children and adolescents with obesity and overweight. International Journal of Obesity, 0, , .	3.4	4
77	p53 Codon 72 Genetic Polymorphism in Asthmatic Children: Evidence of Interaction With Acid Phosphatase Locus 1. Allergy, Asthma and Immunology Research, 2014, 6, 252.	2.9	3
78	Systematic review and meta-analysis on placenta accreta spectrum disorders in twin pregnancies: risk factors, detection rate and histopathology. Minerva Obstetrics and Gynecology, 2021, , .	1.0	3
79	Obesity, Metabolic Syndrome, and Nutrition. World Review of Nutrition and Dietetics, 2022, 125, 41-63.	0.3	3
80	Silent increase of urinary ethylmalonic acid is an indicator of nonspecific brain dysfunction. NMR in Biomedicine, 2010, 23, 353-358.	2.8	2
81	Increased GLP-1 response to oral glucose in pre-pubertal obese children. Journal of Pediatric Endocrinology and Metabolism, 2016, 29, 901-906.	0.9	2
82	Increased hepcidin levels and non-alcoholic fatty liver disease in obese prepubertal children: a further piece to the complex puzzle of metabolic derangements. Journal of Pediatric Endocrinology and Metabolism, 2022, 35, 39-47.	0.9	2
83	Gut hormones secretion across clusters of Metabolic Syndrome in prepubertal children with obesity. Hormone Research in Paediatrics, 2022, , .	1.8	1
84	Metabolic dysfunction-associated fatty liver disease in obese youth with insulin resistance and type 2 diabetes. Current Opinion in Pediatrics, 2022, 34, 414-422.	2.0	1
85	Metabolic Syndrome in Childhood as a Risk Factor for Type 2 Diabetes. , 2012, , 83-91.		0
86	Obesity and Type 2 Diabetes in Youths. , 2012, , 77-87.		0
87	Effects of Growth Hormone (GH) Supplementation on Dermatoscopic Evolution of Pigmentary Lesions in Children with Growth Hormone Deficiency (GHD). Journal of Clinical Medicine, 2022, 11, 736.	2.4	0
88	Metabolic changes across tertiles of delta changes in height-SDS during growth hormone therapy in children with Growth Hormone Deficiency (GHD). Hormone Research in Paediatrics, 0, , .	1.8	0