
James B Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3785326/publications.pdf

Version: 2024-02-01

IAMES R STEWADT

#	Article	lF	CITATIONS
1	Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Repair, 2022, 110, 103273.	2.8	16
2	Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Reviews Genetics, 2021, 22, 106-118.	16.3	139
3	Current progress with mammalian models of mitochondrial <scp>DNA</scp> disease. Journal of Inherited Metabolic Disease, 2021, 44, 325-342.	3.6	19
4	Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nature Communications, 2021, 12, 3210.	12.8	42
5	High-Throughput Detection of mtDNA Mutations Leading to tRNA Processing Errors. Methods in Molecular Biology, 2021, 2192, 117-132.	0.9	4
6	Mitochondrial DNA heteroplasmy is modulated during oocyte development propagating mutation transmission. Science Advances, 2021, 7, eabi5657.	10.3	22
7	Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. PLoS Genetics, 2020, 16, e1009242.	3.5	41
8	Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. , 2020, 16, e1009242.		0
9	Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. , 2020, 16, e1009242.		0
10	Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. , 2020, 16, e1009242.		0
11	Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing. , 2020, 16, e1009242.		0
12	Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Science Advances, 2019, 5, eaav9824.	10.3	86
13	Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Science Alliance, 2019, 2, e201800219.	2.8	26
14	A novel histochemistry assay to assess and quantify focal cytochrome <i>c</i> oxidase deficiency. Journal of Pathology, 2018, 245, 311-323.	4.5	17
15	Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nature Communications, 2018, 9, 1202.	12.8	57
16	Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 2018, 24, 1691-1695.	30.7	215
17	MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nature Medicine, 2018, 24, 1696-1700.	30.7	187
18	Delivery of mtZFNs into Early Mouse Embryos. Methods in Molecular Biology, 2018, 1867, 215-228.	0.9	6

JAMES B STEWART

#	Article	IF	CITATIONS
19	Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Research, 2018, 46, 6642-6669.	14.5	58
20	Increased Total mtDNA Copy Number Cures Male Infertility Despite Unaltered mtDNA Mutation Load. Cell Metabolism, 2017, 26, 429-436.e4.	16.2	84
21	A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease. Cell Reports, 2016, 16, 2980-2990.	6.4	102
22	Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly. Cell Reports, 2016, 16, 1874-1890.	6.4	116
23	Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division. Human Molecular Genetics, 2016, 25, 706-714.	2.9	11
24	Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers. PLoS Genetics, 2015, 11, e1005333.	3.5	102
25	Mitochondrial DNA: Radically free of free-radical driven mutations. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1354-1361.	1.0	52
26	Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nature Communications, 2015, 6, 8808.	12.8	48
27	The exonuclease activity of DNA polymerase \hat{I}^3 is required for ligation during mitochondrial DNA replication. Nature Communications, 2015, 6, 7303.	12.8	70
28	The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics, 2015, 16, 530-542.	16.3	679
29	Addressing RNA Integrity to Determine the Impact of Mitochondrial DNA Mutations on Brain Mitochondrial Function with Age. PLoS ONE, 2014, 9, e96940.	2.5	5
30	The Challenges of Mitochondrial Replacement. PLoS Genetics, 2014, 10, e1004315.	3.5	61
31	Keeping mtDNA in Shape between Generations. PLoS Genetics, 2014, 10, e1004670.	3.5	90
32	No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Research, 2014, 42, 1111-1116.	14.5	92
33	Characterization of the sea urchin mitochondrial transcription factor A reveals unusual features. Mitochondrion, 2014, 14, 34-41.	3.4	2
34	Similar patterns of clonally expanded somatic mtDNA mutations in the colon of heterozygous mtDNA mutator mice and ageing humans. Mechanisms of Ageing and Development, 2014, 139, 22-30.	4.6	33
35	Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature, 2013, 501, 412-415.	27.8	231
36	MTERF1 Binds mtDNA to Prevent Transcriptional Interference at the Light-Strand Promoter but Is Dispensable for rRNA Gene Transcription Regulation. Cell Metabolism, 2013, 17, 618-626.	16.2	93

JAMES B STEWART

#	Article	IF	CITATIONS
37	LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO Journal, 2012, 31, 443-456.	7.8	264
38	Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Research, 2012, 40, 7606-7621.	14.5	64
39	Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nature Genetics, 2012, 44, 1282-1285.	21.4	128
40	<i>In vivo</i> mutagenesis reveals that OriL is essential for mitochondrial DNA replication. EMBO Reports, 2012, 13, 1130-1137.	4.5	59
41	The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster. PLoS Genetics, 2011, 7, e1002324.	3.5	55
42	Ultra-Deep Sequencing of Mouse Mitochondrial DNA: Mutational Patterns and Their Origins. PLoS Genetics, 2011, 7, e1002028.	3.5	162
43	Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene, 2009, 445, 49-57.	2.2	94
44	Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera). Genome, 2009, 52, 31-38.	2.0	56
45	Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nature Reviews Genetics, 2008, 9, 657-662.	16.3	155
46	Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient mice. Human Molecular Genetics, 2008, 17, 2329-2335.	2.9	85
47	Strong Purifying Selection in Transmission of Mammalian Mitochondrial DNA. PLoS Biology, 2008, 6, e10.	5.6	425
48	Insect mitochondrial genomics 2: the complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps, asymmetric directional mutation bias, and conserved plecopteran A+T-region elements. Genome, 2006, 49, 815-824.	2.0	55
49	Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 545-579.	8.3	496
50	Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome, 2005, 48, 46-54.	2.0	93
51	Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Molecular Phylogenetics and Evolution, 2003, 26, 513-526.	2.7	70
52	MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. , 0, .		1