POORNIMA VIJAYAN P

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3783691/publications.pdf

Version: 2024-02-01

35 papers 1,258 citations

20 h-index 35 g-index

35 all docs

35 docs citations

35 times ranked 1423 citing authors

#	Article	IF	CITATIONS
1	Development, characterization, and tribological behavior of polymeric carbon nitride/ <scp>acrylonitrile butadiene styrene</scp> nanocomposites. Polymer Composites, 2022, 43, 848-861.	4.6	5
2	Integration of antifouling properties into epoxy coatings: a review. Journal of Coatings Technology Research, 2022, 19, 269-284.	2.5	21
3	Evaluation of Corrosion Protection of Self-Healing Coatings Containing Tung and Copaiba Oil Microcapsules. International Journal of Polymer Science, 2021, 2021, 1-13.	2.7	6
4	Sugarcane Bagasse-Derived Activated Carbon- (AC-) Epoxy Vitrimer Biocomposite: Thermomechanical and Self-Healing Performance. International Journal of Polymer Science, 2021, 2021, 1-7.	2.7	8
5	Anomalous Dielectric Behavior in Co-Doped TiO ₂ Nanotubes: Effect of Oxygen Vacancy Mediated Defect Dipole Pairs. ECS Journal of Solid State Science and Technology, 2021, 10, 113006.	1.8	1
6	Effect of Nickel Doping on the Cure Kinetics of Epoxy/Fe3O4 Nanocomposites. Journal of Composites Science, 2020, 4, 102.	3.0	3
7	A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. Journal of Composites Science, 2020, 4, 111.	3.0	13
8	Biomimetic multifunctional materials: a review. Emergent Materials, 2019, 2, 391-415.	5.7	27
9	Self-Repairing Composites for Corrosion Protection: A Review on Recent Strategies and Evaluation Methods. Materials, 2019, 12, 2754.	2.9	47
10	TiO ₂ /Halloysite hybrid filler reinforced epoxy nanocomposites. Polymer Composites, 2018, 39, E2426.	4.6	17
11	The role of clay modifier on cure characteristics and properties of epoxy/clay/carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) hybrid. Materials Technology, 2017, 32, 171-177.	3.0	19
12	Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels. RSC Advances, 2017, 7, 2218-2230.	3.6	55
13	To What Extent Can Hyperelastic Models Make Sense the Effect of Clay Surface Treatment on the Mechanical Properties of Elastomeric Nanocomposites?. Macromolecular Materials and Engineering, 2017, 302, 1700036.	3.6	16
14	Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses. Progress in Organic Coatings, 2017, 108, 75-83.	3.9	60
15	Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of â€~micro' and â€~nano' so Materials Science and Engineering Reports, 2017, 116, 1-29.	ale. 31.8	99
16	3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Materials and Design, 2017, 117, 203-212.	7.0	44
17	Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites. Progress in Organic Coatings, 2017, 112, 176-186.	3.9	56
18	Cellulose nanofibers to assist the release of healing agents in epoxy coatings. Progress in Organic Coatings, 2017, 112, 127-132.	3.9	48

2

#	Article	IF	CITATIONS
19	Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers. Polymers, 2017, 9, 33.	4.5	108
20	A comparative study on long term stability of self-healing epoxy coating with different inorganic nanotubes as healing agent reservoirs. EXPRESS Polymer Letters, 2017, 11, 863-872.	2.1	11
21	TiO2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings. Scientific Reports, 2016, 6, 38812.	3.3	44
22	Halloysite Nanotube as Multifunctional Component in Epoxy Protective Coating. Industrial & Engineering Chemistry Research, 2016, 55, 11186-11192.	3.7	65
23	Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour. Physical Chemistry Chemical Physics, 2016, 18, 19655-19667.	2.8	40
24	Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites. Advances in Polymer Technology, 2016, 35, .	1.7	6
25	â€~Containers' for self-healing epoxy composites and coating: Trends and advances. EXPRESS Polymer Letters, 2016, 10, 506-524.	2.1	52
26	Cuprous oxide nanoparticles in epoxy network: Cure reaction, morphology, and thermal stability. Polymer Engineering and Science, 2015, 55, 2293-2306.	3.1	5
27	Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Composites Science and Technology, 2015, 116, 9-17.	7.8	86
28	Volume Shrinkage and Cure Kinetics in Carboxyl-Terminated Poly(butadiene-co-acrylonitrile) (CTBN) Modified Epoxy/Clay Nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 353-359.	2.2	14
29	Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin–diamino diphenyl methane nanostructured blend systems. Physical Chemistry Chemical Physics, 2015, 17, 12760-12770.	2.8	28
30	Liquid-rubber-modified epoxy/clay nanocomposites: effect of dispersion methods on morphology and ultimate properties. Polymer Bulletin, 2015, 72, 1703-1722.	3.3	26
31	Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polymers for Advanced Technologies, 2015, 26, 142-146.	3.2	21
32	Liquid rubber and silicon carbide nanofiber modified epoxy nanocomposites: Volume shrinkage, cure kinetics and properties. Composites Science and Technology, 2014, 102, 65-73.	7.8	36
33	Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter, 2013, 9, 2899.	2.7	96
34	Clay nanostructure and its localisation in an epoxy/liquid rubber blend. RSC Advances, 2013, 3, 24634.	3.6	31
35	Effect of nanoclay and carboxyl-terminated (butadiene-co-acrylonitrile) (CTBN) rubber on the reaction induced phase separation and cure kinetics of an epoxy/cyclic anhydride system. Journal of Materials Science, 2012, 47, 5241-5253.	3.7	44