Zhiwei Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/378368/publications.pdf

Version: 2024-02-01

30	1,379	18	30
papers	citations	h-index	g-index
31	31	31	1918
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The "less-is-more―in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs, 2018, 10, 693-711.	5.2	215
2	Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discovery Today, 2016, 21, 740-765.	6.4	164
3	IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. Journal of Biotechnology, 2012, 157, 130-139.	3.8	136
4	Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Molecular Aspects of Medicine, 2013, 34, 590-600.	6.4	109
5	The sweet tooth of biopharmaceuticals: Importance of recombinant protein glycosylation analysis. Biotechnology Journal, 2012, 7, 1462-1472.	3.5	99
6	Optimization of Heavy Chain and Light Chain Signal Peptides for High Level Expression of Therapeutic Antibodies in CHO Cells. PLoS ONE, 2015, 10, e0116878.	2.5	83
7	RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metabolic Engineering, 2006, 8, 509-522.	7.0	82
8	Inactivation of GDPâ€fucose transporter gene (<i>Slc35c1</i>) in CHO cells by ZFNs, TALENs and CRISPR as9 for production of fucoseâ€free antibodies. Biotechnology Journal, 2016, 11, 399-414.	3.5	57
9	Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant. Glycobiology, 2012, 22, 897-911.	2.5	44
10	The Golgi CMP-sialic acid transporter: A new CHO mutant provides functional insights. Glycobiology, 2008, 18, 851-860.	2.5	42
11	Golgi Phosphoprotein 3 Mediates the Golgi Localization and Function of Protein O-Linked Mannose β-1,2-N-Acetlyglucosaminyltransferase 1. Journal of Biological Chemistry, 2014, 289, 14762-14770.	3.4	42
12	A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metabolic Engineering, 2010, 12, 526-536.	7.0	40
13	Caspase activation, sialidase release and changes in sialylation pattern of recombinant human erythropoietin produced by CHO cells in batch and fed-batch cultures. Cytotechnology, 2006, 51, 67-79.	1.6	29
14	Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metabolic Engineering, 2007, 9, 406-418.	7.0	27
15	CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Bioengineered, 2013, 4, 90-94.	3.2	25
16	RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metabolic Engineering, 2010, 12, 360-368.	7.0	24
17	Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. MAbs, 2019, 11, 965-976.	5.2	23
18	Highly sialylated recombinant human erythropoietin production in largeâ€scale perfusion bioreactor utilizing CHOâ€gmt4 (JW152) with restored GnT I function. Biotechnology Journal, 2014, 9, 100-109.	3.5	21

#	Article	IF	CITATIONS
19	Identification of essential amino acid residues in the hydrophilic loop regions of the CMP-sialic acid transporter and UDP-galactose transporter. Glycobiology, 2010, 20, 689-701.	2.5	19
20	CHO Glycosylation Mutants as Potential Host Cells to Produce Therapeutic Proteins with Enhanced Efficacy. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 63-87.	1.1	18
21	Targeting of embryonic annexin A2 expressed on ovarian and breast cancer by the novel monoclonal antibody 2448. Oncotarget, 2018, 9, 13206-13221.	1.8	17
22	Characterization of a GDP-Fucose Transporter and a Fucosyltransferase Involved in the Fucosylation of Glycoproteins in the Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2019, 10, 610.	3.6	14
23	Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Bioengineered, 2014, 5, 269-273.	3.2	11
24	A quantitative study of the Golgi retention of glycosyltransferases. Journal of Cell Science, 2021, 134,	2.0	10
25	Deciphering O-glycomics for the development and production of biopharmaceuticals. Pharmaceutical Bioprocessing, 2013, 1, 89-104.	0.8	8
26	Improving Antibody Production in Stably Transfected CHO Cells by CRISPRâ€Cas9â€Mediated Inactivation of Genes Identified in a Largeâ€Scale Screen with Chinese Hamsterâ€Specific siRNAs. Biotechnology Journal, 2021, 16, e2000267.	3.5	7
27	Sodium butyrate enhances the acidic isoform content of recombinant human erythropoietin produced by Chinese hamster ovary cells. Biotechnology Letters, 2014, 36, 907-911.	2.2	5
28	Improving sialylation of recombinant biologics for enhanced therapeutic efficacy. Pharmaceutical Bioprocessing, 2014, 2, 363-366.	0.8	3
29	Bad plays a more significant role than Bid and Bim in mediating cell death signals in batch cultures of HEK 293 cells. Biotechnology Letters, 2008, 30, 819-827.	2.2	2
30	Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants. Methods in Molecular Biology, 2015, 1321, 323-333.	0.9	1